\]

————————————— . FormApprdved
. .REPORT DOCUMENTATION PAGE | | OMB No. 074-0188

[ reportin ) burd‘ for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
;:bggta rpl‘e'edegd, andegompletin‘g and reviewing this colléction of information. Send comments regarding this burden estimate or any othgr aspect of this collection of information, including sugges_nons for
reducing thisburden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of

’ -Manageméﬁ'itand Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
(Leave blank) July 2003 Annual (1 Jul 02-30 Jun 03)
4. TITLE- AND SUBTITLE . 5. FUNDING NUMBERS

DAMD17-00-1-0256
Molecular Characterization of Resistance

6. AUTHOR(S) » .

Robert Clarke, Ph.D. : ' 20040602 0 1 5
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Georgetown University Medical Center REPORT NUMBER

Washington, DC 20057

E-Mail: clarker@georgetown.edu A »
9. SPONSORING / MONITORING 10. SPONSORING / MONITORING
AGENCY NAME(S) AND ADDRESS(ES) AGENCY REPORT NUMBER

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

11. SUPPIEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT . - _ 12b. DISTRIBUTION CODE
Approved for Public Release; Distribution Unlimited

13. ABSTRACT (Maximium 200 Words)

This is an annual report of an IDEA Award to study the molecular mechanisms driving acquired antiestrogen
resistance. We have identified several genes associated with resistance to ICI 182,780 (Fulvestrant. Faslodex).
Our initial studies with NFkB have now been published (Mol Cell Biol, 23: 6887-6900, 2003). Further functional
studies on the role of other genes are in progress, and we have made good progress with IRF-1 using a dominant
negativeconstruct. We also have built and tested neural network predictors to separate several antiestrogen
resistance phenotypes. We have completed and published a method that allows us to visualize very high
dimensional data while maximizing the discriminant information in the molecular profiles (J Signal Process
Systems, in press, 2003). Thus, we have made substantial progress in defining initial components of a broader
antiestrogen signaling network that is directly associated with acquired antiestrogen resistance.

&

14. SUBJECT TERMS 15. NUMBER OF PAGES
Estrogens, antiestrogens, drug resistance, gene expression 93
microarrays 16. PRICE CODE
17. SECURTY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REFPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified Unlimited
NSN 7540-1-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18
298-102




Award Number: DAMD17-00-1-0256

TITLE: Molecular Characterization of Resistance

PRINCIPAL INVESTIGATOR: Robert Clarke, Ph.D.

CONTRACTING ORGANIZATION: Georgetown University Medical Center
: Washington, DC 20057

REPORT DATE: July 2003
TYPE. OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

‘The views, opinions and/or findings contained in this report are
those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision unless so
*de81gnated by other documentatlon




FOREWORD

Opinions, interpretations, conclusions and recommendations are
those of the author and are not necessarily endorsed by the U.S.
Army.

N/A Where copyrighted material is quoted, permission has been
obtained to use such material.

N/A Where material from documents designated for limited
distribution is quoted, permission has been obtained to use the
material.

N/A Citations of commercial organizations and trade names in this
report do not constitute an official Department of Army
endorsement or approval of the products or services of these
organizations.

X 1In conducting research using animals, the investigator(s)
adhered to the "Guide for the Care and Use of Laboratory
Animals, " prepared by the Committee on Care and use of Laboratory
Animals of the Institute of Laboratory Resources, national
Research Council (NIH Publication No. 86-23, Revised 1985).

__ For the protection of human subjects, the investigator(s)
adhered to policies of applicable Federal Law 45 CFR 46.

__ In conducting research utilizing recombinant DNA technology,
the investigator(s) adhered to current guidelines promulgated by
the National Institutes of Health.

__ In the conduct of research utilizing recombinant DNA, the
investigator(s) adhered to the NIH Guidelines for Research
Involving Recombinant DNA Molecules.

In the conduct of research involving hazardous organisms, the

E;vestigator(s) adhered to the CDC-NIH Guide for Biosafety in
Microbiological and Biomedical Laboratories.

TR u]y/o3

PI - Signature Date




Table of Contents

0 Y=Y U 1
SF 298.....c.ciiiiiiiiiiiiir i e e e e e s s ae e nan 2
FOr@WOId.......ieieiiiniiiiiiieiieirire s rerasssscasessrarasarasasnsennsanssansnsssnsarasnss 3
Table of Contents......c.coieiiiiiiiiiiici e 4
INtroduction.....cccvereiiiiorii s e s 5

= 7o T Y 6-12
Key Research Accomplishments.........c.cocovieiiiiiiiiiniiiiciiinicninee e 6-10
Reportable Outcomes..... T PO IR IR 10
CONCIUSIONS... it s s s e s s e r s 11
References......ccccviiieiiiiiiiiiiiiic e e 11-12
APPENAICES.....ccuiniiiiiiiri i e e s e s ana e

1. Pratt, M.A.C., Bishop, T.E., White, D., Yasvinski, G., Ménard, M., Niu, M.Y. & Clarke. R.
“Estrogen withdrawal-induced NF-xB and Bcl-3 expression in breast cancer cells: roles in
growth and hormone independence. ” Mol Cell Biol, 23: 6887-6900, 2003.

2. Wang, Z., Zhang, J., Lu, J., Lee, R., Kung, S.-Y., Clarke R. & Wang Y. Discriminatory mining
of gene expression microarray data. J Signal Process Systems, in press.

3. Clarke, R., Liu, M.C., Bouker, K.B., Gu, Z., Lee, R.Y., Zhuy, Y., Skaar, T.C., Gomez, B.,
O'Brien, K., Wang, Y., Hilakivi-Clarke, L.A. “Antiestrogen resistance in breast cancer and the
role of estrogen receptor signaling.” Oncogene, 22: 7316-7339, 2003. '

4. Welch, JN. & Clarke, R. "ErbB-2 expression and drug resistance in cancer." Signal, 3: 4-9,
2002. (review — this was presented as being in press in the prior report).

5. Liu, Aiyi, Zhang, Ying, Gehan, Edmund & Clarke, R. “Block principal component analysis
with application to gene microarray data classification.” Statistics in Medicine, 21:3465-3474




PI: Robert Clarke, Ph.D., D.Sc.

INTRODUCTION

_ Antiestrogens have been successfully used in the management of breast cancer since the first

clinical trial of Tamoxifen (TAM) in 1971 (3). TAM produces a significant increase in both
overall and recurrence-free survival but resistance almost inevitably arises in most patients (5,6).
We hypothesize that one form of acquired antiestrogen resistance reflects the altered expression
of what were previously estrogen-regulated genes. We further hypothesize that only a subset of
all estrogen (E2)-regulated genes, those comprising a specific gene network, is responsible for
the resistance phenotype. Since TAM (triphenylethylene) and ICI 182,780 (steroidal) induce
different ER conformations, we also hypothesize that the consequent patterns of gene regulation
will be different and dictate the presence/absence of crossresistance among antiestrogens.

To address these hypotheses, we have generated novel E2-independent and antiestrogen
resistant variants of the E2-dependent, MCF-7 human breast cancer cell line (MCF7/MIIL,
MCF7/LCC1, MCF7/LCC2, MCF-7/LCC9) - recently reviewed in (1). We also have assembled a
panel of additional resistant cells from within this institution and from other investigators. These
include additional antiestrogen resistant MCF-7 variants (LY2, R27, R3, MCF-7RR), all of
which express ER, and the ER-negative ZR-75-1 (ZR75/LCC3, ZR-75-9al) and T47D (T47Dco)
variants. Other resistance models are currently being obtained from other laboratories or being
generated by selection in vivo selection against TAM in athymic nude rats (rats and humans
perceive TAM as a partial agonist, mice perceive TAM as a pure agonist).

This is an Idea Award to study the genes and patterns of genes expressed in acquired
antiestrogen resistance in cell culture models. The PI will apply new, state-of-the-art technologies
to identify key endocrine-regulated molecular pathways to apoptosis/proliferation. By identifying
key components of these pathways, we may be able to predict response to first-line and crossover
antiestrogenic therapies, and/or provide novel therapeutic strategies for antiestrogen resistant
tumors.

Antiestrogen Resistance. Most breast tumors that initially respond to TAM recur and
require other endocrine or cytotoxic therapies (6). Despite over 10 million patient years of
experience with TAM, the precise mechanisms that confer acquired resistance are unknown (1).
Absence of ER expression is clearly important for de novo resistance (1). ER expression is not
lost in most breast tumors that acquire antiestrogen resistance (9). Currently, there is little
compelling evidence that expression of ER splice variants and mutant ER contribute significantly
to antiestrogen resistance in patients (1,10). While the importance of wild type ERa is established
as a mediator/predictor of antiestrogen responsiveness, that of ERB remains unclear. ERa may be
the predominant species in most ER+ breast tumors (11,13), and is associated with a better
prognosis (7). ERP is associated with a poorer prognosis, absence of PgR, and lymph node
involvement (4,13). One small study reported higher ERB mRNA levels in resistant tumors (12).
However, this association could not be separated from that between ERP and a more aggressive
phenotype (4,13). Some studies report activities independent of ER function, which may initiate
events that are necessary but not sufficient for antiestrogen-induced effects (1). Our research
team has recently reviewed in detail the potential mechanisms of antiestrogen resistance (2).
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BODY OF REPORT
_ Our purpose is to evaluate a series of antiestrogen responsive and resistant breast cancer cell lines
for their patterns of gene expression. We will explore these data using state-of-the-art pattern
analysis and statistically-based methods that apply both statistical and information theory. We
also will apply the more computationally simplistic methods used by others in the field.

In a prior report, we made one change to the specific aims and Statement of Work. Our
collaborations with Dr. Wang's group at Catholic University of America (now at Virginia Tech —
Dr. Wang recently moved to VA Tech’s Alexandria Research Institute), in which we have begun
to develop and test several new algorithms for mining the high dimensional data sets produced by
gene expression microarray analyses, continue throughout this award.

Specific Aims (unchanged)

Specific Aim 1: use gene microarrays to identify differentially expressed genes in a panel of
breast cancer cell lines.

Specific Aim 2: explore the data from Aim 1 to identify those differentially expressed gene
clusters most closely associated with acquired antiestrogen resistance and test further novel
algorithms for the analysis of gene expression microarray data.

Specific Aim 3: begin to assess the likely functional relevance of representative members of
these clusters and study their expression in human breast cancer biopsies.

Long term aims: establish a pattern(s) of gene clusters that can predict antiestrogen responses in
patients. This could lead to a more effective identification of candidates for specific antiestrogen
therapies and identify those patients least likely to respond and who may benefit from an early
initiation of cytotoxic chemotherapy.

KEY RESEARCH ACCOMPLISHMENTS

TASK 1: Use gene microarrays to identify differentially expressed genes in a panel of breast
cancer cell lines.

We have completed this aim with the possible exception of arraying RNA against the new
Affymetrix GeneChip that contains the entire human genome (released in Oct, 2003). For the
c¢DNA arrays (Research Genetics), we have arrayed and individually aligned all of the digitized
images. We used Pathways vs. 4.0 and independently aligned each of the ~4,000 spots/array; this
is very time consuming but provides much higher quality data than using only the software to
align automatically each spot. We have also generated some simple algorithms to more
effectively assess bleeding effects - a problem with these radiolabeled probes where the signal
from an abundant mRNA bleeds into an adjacent signal. This approach will be included in a
manuscript currently in preparation and is briefly described below.

Data Preprocessing: Pathways™ 4.0 software algorithms (Research Genetics, Inc.) corrected the
local nonspecific binding of the probe to filter for each spot (background correction). Intensities
of both local background and spot for each gene were measured geometrically. Each gene’s
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average intensity was measured specifically within a circle target that is 75% of the circle
. enclosing the gene spot. Additionally, from 125% outside the enclosed circle to 150% outside the
circle (in square form), the average local background intensity for each gene was measured.

Radioactive signal bleeding from neighboring cDNA spots is a major confounding factor
in this microarray platform. Consequently, we generated a simple algorithm to detect
compromised signals. For each gene on the nylon filter, bleeding effects were approximated by
calculating the difference between the local and global background signals. Global background
was estimated by taking the mean of the lowest 20% of all local background intensities from
cDNA-free regions on the nylon filter. Genes were called as being “very low/not detected” if
their raw intensity signals were within three standard deviations of the global background mean.

The difference between local and global background was calculated as a percentage of the
raw intensity value of that gene. A “percentage-above” threshold was constructed to indicate that
the radioactivity from neighboring spots had bled into the spot of interest, whereas a “percentage-
below threshold” was used to indicate that the bleeding effects were negligible. Invalid genes
were eliminated from the analyses.

Because the calculated estimate of the bleeding effect was empirically derived, a range of
threshold values was inspected and statistical analyses were re-evaluated on the data sets with the
varying threshold values used to assess likely radioactive bleeding. A threshold range of 21%-
40% was necessary to objectively tag and eliminate affected genes by considering the bleeding
effects of 1) the local spot, 2) the neighboring spots into the local background area, and 3)
nonspecific local background hybridization. In addition, for genes of interest, manual spot
visualization was performed to assess further the bleeding effect estimate.

- TASK 2: Explore the data from Aim 1 to identify those differentially expressed gene clusters
most closely associated with acquired antiestrogen resistance.

We have essentially competed this Task, using both the Clontech and Research Genetics
platforms. Our previous report included tables of the data from the Clontech arrays. We now
include a Table of genes from the Research Genetics platform. We would not expect to find the
same genes since there are many genes on the ResGen filters that are not on the Clontech filters.
Furthermore, since the probes are prepared and labeled differently, the signal scale for each gene
is different and, therefore, the ability to identify differential expression is not identical.

LCC1 (n=3; responsive), LCC2 (n=3; resistant), LCC9 (n=3; resistant), LY2 (n=3;
resistant), and RR (n=3; resistant) are estrogen independent MCF-7 breast cancer cell line
variants that are either resistant or responsive to known Selective Estrogen Receptor Modulators.
These cell lines were arrayed against Research Genetics GF211 (NamedGenes™) nylon filters
probing radiolabeled-**P cDNA targets. A Molecular Dynamics Storm Phosphorimager was used
to scan the radiolabeled filters, and Resgen Pathways™ 4.0 imaging software measured the
densitometric readings from the digital scans.

In-depth analyses/mining were done on Mathworks MATLAB™ with established and
developing algorithms. After excluding low threshold signals (<0.1 in each group) and bleeding
effects contributed by the neighboring spots (as described above), we initially filtered the 4,324
dimensional array to 1,882 genes. At the top level, we globally visualized the 1,882-dimensional
data from the breast cancer variants using Principal Component Analyses (PCA). A nonlinear
separation is seen in this projection between the antiestrogen resistant and responsive groups,
suggesting that phenotype separation is possible and more samples are needed to clearly define
the boundary between the two antiestrogen resistant/responsive breast cell models (this is data
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wisualization, not data analysis) in this full dimensional data space.
. Dimensionality reduction by gene selection was necessary to identify an accurate and
robust discriminant gene expression profile. We used a novel profile selection algorithm that
filters the 1882-D data set by the highest signal-to-noise ratios, and then eliminates genes by both
assessing their contribution to the profile’s strength and by maximizing the trace of a weighted
Fisher’s scatter matrix. We applied the algorithm to the two different antiestrogen
resistant/responsive phenotypes from the MCF-7 variants using either all samples or random
multiple subsets of samples. From using all the of estrogen independent MCF-7 variant cell
lines, the algorithm identified a 20 gene subset that discriminates accurately between the two
phenotypes. This 20-dimensional data set was projected into 3-dimensional space with both PCA
and our new Discriminant Component Analysis (DCA) (14). The antiestrogen
resistant/responsive phenotypes are now linearly separable in both visualizations (see Figure
below).

We iteratively tested a neural network Multi-Layer Perceptron composed of three hidden
nodes in one hidden layer. Four random samples from the antiestrogen resistant samples were
chosen as independent data sets, and the remaining samples were used to train a neural network
to predict the class of each independent sample (trained using the 20 genes selected above).
After 100 cycles, the MLP predicted the independent samples with an overall accuracy of 92.5%,
as a proof of principle that antiestrogen resistance can be adequately predicted.

RESPONSIVE / RESISTANT / Student t-test

UNIGENE ID  Gene Description RESISTANT  RESPONSIVE (equal)

mesenchyme homeo box 2 (growth arrest-

Hs.77858 . 2 0.50 5.06037E-05
specific homeo box)
Hs.77515 inositol 1,4,5-triphosphate receptor, type 3 2 0.50 0.000504835
myeloid/lymphoid or mixed-lineage leukemia
Hs.404 (trithorax (Drosophila) homolog); translocated 2 0.50 0.000328254
to, 3
eukaryotic translation initiation factor 2,
Hs.151777 subunit 1 (alpha, 35kD ) 4 0.25 0.000748487
Hs.271980 mitogen-activated protein kinase 6 2 0.50 0.000633155
Hs.172210 MUF]1 protein 6 0.20 0.000361767
fibroblast growth factor receptor 3
Hs.1420 (achondroplasia, thanatophoric dwarfism) 2 0.50 0.000383285
Hs.26014 activin A receptor, type II 3 0.33 1.02059E-05
Hs.349092 ESTs., Weakly'smular to 138022 hypothetical 4 0.25 6.81344E-05
protein [H.sapiens]
Hs.75447 ralA binding protein 1 4 0.25 0.000316546
Hs.74294 aldehyde dehydrogenase 7 family, member Al 2 0.50 0.000100641
Hs.82002 endothelin receptor type B 3 0.33 0.000569089
Hs.4082 lse)ctm, galactoside-binding, soluble, 8 (galectin 5 0.20 1.83147E-05
Hs.4187 hypothetical protein 24636 5 0.20 4.789E-07
Hs.75564 CD151 antigen 3 0.33 0.000340471
Hs.77613 ataxia telangiectasia and Rad3 related 2 0.50 0.000390206
Hs.74101 spleen tyrosine kinase 2 0.50 0.000482157
Hs.89601 g;l;)P glycosyltransferase 2 family, polypeptide 2 0.50 0.001938960
Hs.48876 farnesyl-diphosphate farnesyltransferase 1 2 0.50 0.00018038
Hs.08074 gg:fe(mouse homolog) E3 ubiquitin protein 3 033 0.000154619
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These observations strongly implicate the 20 genes as being both differentially expressed
and discriminatory between antiestrogen sensitive and resistant cells. The data also suggest that
some of these genes may be functionally involved in conferring acquired antiestrogen resistance
in breast cancer cells. Further analysis of these genes and the entire data set continue as we apply
additional methods to mine the data.

In our last report we included our new normalization publication (IEEE Trans Inf Technol
Biomed, 6: 29-37, 2002). We now include a publication on our novel "block principal
components analysis" method for exploring gene expression microarray data. A reprint is
included in the appendix.

We have also derived a new method for multidimensional scaling called discriminant
components analysis. Rather than focusing on capturing data variance, as is done using principal
component analysis, this new method maximizes the discriminating components in the data. The
manuscript has been accepted for publication in the informatics literature (Journal of Signal
Processing Systems) and a preprint is included in the appendix.

TASK 3: Begin to assess the likely functional relevance
of representative members of these clusters and study
their expression in human breast cancer biopsies.

To maintain focus within this application, we have limited
our initial studies to NFkB and IRF-1. Our intention is to
obtain sufficient preliminary data to support an ROl or
DOD application focused on these two genes and their
interactions in antiestrogen resistance. We have continued
to study the role of our dominant negative interferon
regulatory factor-1 (dnIRF-1). We have now made
DCA projection of 20-D data set showing excell.ent progress on this aspect of t}}e. study and have
linear separability of antiestrogen sensitive | Submitted a manuscript showing the ability of dnIRF-1 to
and resistant profiles. 0=LCCI (sensitive; | block the proapoptotic effects of ICI 182,780 but not the
?:33) r:s:];aztz) 2]:135 é‘z’s‘g)rve;:‘mcnff cell cycle arrest effects of the antiestrogen. Our' z'1b‘i1ity to
»=RR (n=3; resistant); Total variance | Separate these two components of sensitivity to
covered by top 3PC: 75% antiestrogens has several important implications. For
example, selectively increasing the proapoptotic effects of
antiestrogens may be an effective means to improve their ability to increase overall survival in
patients because this should increase the proportion of cells undergoing apoptotic cell death.
Cells that are only growth arrested may survive and thereby have more opportunities to adapt,
acquire resistance, and generate subsequent disease recurrence. A copy of the manuscript will be
included with the final report.
We have also made good progress in our initial studies on NFkB. In a collaboration with
Dr. Christine Pratt at the University of Manitoba, we now implicate NFkB in estrogen-
independence. These data are consistent with the increased sensitivity of our antiestrogen
resistant cells to the natural inhibitor of NFkB (parthenolide). Our data with parthenolide were
included in the paper by Gu et al. that we included with last years report (8). The study with Dr.
Pratt’s laboratory is included with this report (see appendix).




PI: Robert Clarke, Ph.D., D.Sc.

Key Research Accomplishments (bulleted)

T e Completed and published manuscript describing data implicating NFxB in estrogen
independence.
° Completed microarray data analysis of cell lines.
° Built an accurate neural predictor of antiestrogen responsiveness based on the microarray

data collected above.

° Completed and published (in press) a new algorithm for microarray data visualization
based upon maximizing the discriminant data among experimental groups.

o Completed and submitted our initial studies of the role of IRF-1 in ICI 182,780 mediated
cell signaling.

Reportable Outcomes
Reportable outcomes are presented as manuscripts and abstracts.

Manuscripts and Abstracts
We have published several studies directly related to the funded work, including a major review
in the journal Oncogene.

Manuscripts

1. Pratt, M.A.C., Bishop, T.E., White, D., Yasvinski, G., Ménard, M., Niu, M.Y. & Clarke. R.
“Estrogen withdrawal-induced NF-xB and Bcl-3 expression in breast cancer cells: roles in
growth and hormone independence. ” Mol Cell Biol, 23: 6887-6900, 2003.

2. Wang, Z., Zhang, J., Lu, J., Lee, R., Kung, S.-Y., Clarke R. & Wang Y. Discriminatory mining
of gene expression microarray data. J Signal Process Systems, in press.

3. Clarke, R., Liu, M.C., Bouker, K.B., Gu, Z., Lee, R.Y., Zhu, Y., Skaar, T.C., Gomez, B.,
O'Brien, K., Wang, Y., Hilakivi-Clarke, L.A. “Antiestrogen resistance in breast cancer and the
role of estrogen receptor signaling.” Oncogene, 22: 7316-7339, 2003.

4. Welch, J.N. & Clarke. R. "ErbB-2 expression and drug resistance in cancer." Signal, 3: 4-9,
2002. (review — this was presented as being in press in the prior report).

Reprints of papers #1-3 and a preprint of #4 are included in the appendix.

Abstracts
1. Zwart, A,, Lee, R.Y., Zhang, J., Wang, J., Wang, Y. & Clarke, R. "mRNA profiles from
MCF-7 variants are used to predict antiestrogen resistance/responsive phenotypes." Proc 85th

Annual Meeting Endocrine Society 146, 2003.
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_ Conclusions

We have made excellent progress in our studies on the molecular characterization of antiestrogen
resistance, which is evident in our productivity as measured by publications and new preliminary
data. The study is on-track and the amount of data accumulating is considerable. Several new
algorithms under development are showing good performance in our initial analyses. Our data
with NFxB, IRF-1, and the dnIRF-1 are encouraging and suggest we are on the right track to
identifying new signal transduction pathways associated with acquired antiestrogen resistance.
For example, these data show that resistant cells are more sensitive to inhibition of NFkB.
Overexpression of IRF-1, which is suppressed by estrogens and induced by antiestrogens, is
associated with reduced cell proliferation, and the dnIRF-1 data indicate that ICI 182,780 signals
to apoptosis primarily through IRF-1.
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About one-third of breast cancers express a functional estrogen (B-estradiol [E2]) receptor (ER) and are
initially dependent on E2 for growth and survival but eventually progress to hormone independence. We show
here that ER*, E2-independent MCF-7/LCC1 cells derived from E2-dependent MCF-7 cells contain elevated
basal NF-kB activity and elevated expression of the transcriptional coactivator Bcl-3 compared with the
parental MCF-7 line, LCC1 NF-kB activity consists primarily of p50 dimers, although low levels of a p65/p50
complex are also present. The ER™ breast cancer cell lines harbor abundant levels of both NF-kB complexes.
In contrast, nuclear extracts from MCF-7 cells contain a significantly lower level of p50 and p65 than do LCC1
cells. Estrogen withdrawal increases both NF-kB DNA binding activity and expression of Bcl-3 in MCF-7 and
LCC1 cells in vitro and in vivo. Tumors derived from MCF-7 cells ectopically expressing Bcl-3 remain E2
dependent but display a markedly higher tumor establishment and growth rate compared to controls. Expres-
sion of a stable form of IxB« in LCCI cells severely reduced nuclear expression of p65 and the p65/p50 DNA
binding heterodimer. Whereas LCC1 tumors in nude mice were stable or grew, LCC1(IxkBa) tumors regressed
after E2 withdrawal. Thus, both p50/Bcl-3- and p65/p50-associated NF-kB activities are activated early in
progression and serve differential roles in growth and hormone independence, respectively. We propose that E2
withdrawal may initiate selection for hormone independence in breast cancer cells by activation of NF-xB and

Bcl-3, which could then supplant E2 by providing both survival and growth signals.

About 60% of all diagnosed breast cancers express estrogen
receptors (ERs), and about half of these are dependent on
estrogen for growth and are initially responsive to endocrine
therapy (15, 25, 48). These tumors eventually acquire resis-
tance to hormonal manipulation as part of their progression
toward a more malignant phenotype, and in many instances
they cease to express ERs or express mutant forms of the ER
(33, 34). The MCF-7 line is a widely used prototype for estro-
gen-dependent breast cancer. These cells form tumors in nude
mice in the presence of circulating B-estradiol (E2), and the
tumors regress rapidly through an apoptotic mechanism (21)
when the source of E2 is removed (29, 44). In order to study
the progression of breast cancer toward a hormone-indepen-
dent phenotype, sublines derived from MCF-7 cells cultured in
vivo and in vitro in the presence of subphysiological concen-
trations of estrogen have been isolated (13, 14). MCF-7/MIII
cells were isolated from a small, slowly proliferating MCF-7
tumor that arose in an ovariectomized athymic mouse, and a
second passage produced MCF-7/LCC1 cells, which form E2-
independent tumors with a significantly reduced latency. Both
cell lines retain the parental MCF-7 level of expression of the
ER but display increased expression of some estrogen-regu-
lated genes with a concomitant loss of E2 responsiveness in
vitro. Although LCCI1 cells can efficiently generate tumors in
nude mice in the absence of estrogen, they grow more rapidly
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when estrogen is present and therefore retain a degree of
estrogen responsiveness in vivo (9).

The transcription factor NF-xkB is composed of a het-
erodimer of members of the Rel family of transcription factors,
including p50 (NF-«kB1), p65(RelA), c-Rel, RelB, and p52(NF-
kB2). Transactivation domains are absent in p50 and p52, and
thus they are active only as heterodimers with other members.
This family of proteins contains Rel homology domains which
mediate DNA binding, dimerization, and nuclear localization.
Activation of NF-kB occurs following a wide variety of stimuli,
including exposure to some cytokines and several kinds of
stress. Inactive NF-kB is maintained in the cytoplasm as a
result of interaction with an inhibitory subunit, IkB (4), of
which there are four subtypes, o,B, v, and € (31). NF-«B acti-
vation follows phosphorylation of IxB by IkB kinases (o or B),
which in turn are activated by an NF-kB-inducing kinase called
NIK (24, 38). IkB phosphorylation results in its degradation
and subsequent release, allowing NF-xB translocation to the
nucleus, where it regulates a large number of genes involved in
inflammation, immunity, cell adhesion, and apoptosis-regula-
tory molecules (2). Another member of the IkB family is the
oncoprotein Bcl-3, which can disrupt the association between
transcriptionally inactive p50 and p52 homodimers, allowing
association of a transactivating partner. Bcl-3 can also directly
activate transcriptional function in these complexes (reference
31 and references therein). Much of the information regarding
the role of NF-kB in cell survival has come from the study of
tumor necrosis factor alpha signaling in tumor cells. While the
tumor necrosis factor alpha receptor activates a caspase cas-
cade leading to apoptosis, in most cells a concomitant activa-
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tion of NF-kB prevents cell death (3, 5). These observations
led to the discovery that NF-kB regulates the activity of several
survival genes, including genes for Bcl-x and inhibitors of ap-
optosis (IAPs) (reviewed in reference 42).

There is abundant evidence that NF-«kB can promote tumor-
igenesis (32, 46). One of the earliest reports showed that an-
tisense downregulation of the p65 subunit of NF-kB in fibro-
sarcoma cells could both inhibit tumorigenicity and cause
tumor regression (22). More recently, inhibition of NF-kB
activity by stable expression of a dominant negative inhibitory
IxB kinase in mouse mammary tumor cells reduced their tu-
morigenic potential (7). Resistance to chemotherapeutic drugs
is also impaired by NF-kB inhibition in tumor cells (32, 54).
Studies have shown that breast cancer cell lines expressing the
ER contain low levels of NF-kB DNA binding activity, while
ER™ breast cancer cells display constitutively high levels of
NF-kB DNA binding and correspondingly high NF-kB trans-
activational activity (36, 50). NF-kB activity is also induced in
rat mammary glands after treatment with carcinogens and ap-
pears to increase prior to malignant transformation of mam-
mary epithelial cells (28).

In this study we have used the ER-positive, hormone-inde-
pendent LCC1 and MCF-7 parental cells to determine if and at
which stage during serial breast cancer cell progression toward
hormone independence these cells begin to acquire elevated
NF-kB activity. Using a tumor xenograft model, we show that
(i) expression of the Bcl-3 protein in MCF-7 cells augments
tumor establishment and growth but is insufficient to confer
E2-independence and (ii) inhibition of p65-associated NF-xB
activity with a dominant form of the NF-kB inhibitor IxBa
reverts the E2-independent phenotype of LCC1 cells.

MATERIALS AND METHODS

Plasmids and antibodies. Anti-p65 (A), anti-pS0 (H-119), anti-p52 (K-27),
anti-c-Rel (N), anti-Bax (N-20), and anti-Bcl-3 were obtained from Santa Cruz
Biotechnology. Anti-Bcl-2 and anti-Bcl-xL were gifts from John Reed, La Jolla,
Calif. Anti-FLAG M2 monoclonal antibody and anti-a-actin polyclonal antibody
were purchased from Sigma. The 3X-NF-«kB,-luciferase construct containing
three copies of the NF-kB response element from the major histocompatibility
complex class I gene and a mutated version of this element (19), pPRC/CMV-
FLAG-tagged IxBa S32A/S36A, the superrepressor form of IkBa (IkBaSR)
(27), and CMV-2-FLAG-Bcl-3 were provided by A. S. Baldwin. Initial studies
utilized the major histocompatibility complex reporter gene, and the « light-
chain reporter gene was obtained later since it produced higher overall enzyme
values after transfection.

Cell culture and transfection. MCF-7 cells were derived from several isolates.
MCF-7(early) and MCF-7(late) cells are uncloned isolates of MCF-7 at con-
trolled passages of 46 to 48 and 157 to 159, respectively. MCF-7/MIII and
MCF-7/LCCt are ER*, E2-independent cell lines. MIII cells were isolated from
a slow-growing tumor resulting from inoculation of parental MCF-7 cells into an
ovariectomized nude mouse. MIII cells were further passaged in ovariectomized
nude mice and then reestablished in vitro as the continuous line MCF-7/LCC1,
which forms tumors in ovariectomized mice with reduced latency (9). Both
sublines were passaged fewer than 30 times after isolation. Other MCF-7 cells,
not designated early or late passage, were obtained originally from L. Murphy
(Winnipeg, Canada) and are of undetermined passage. MDA-MB-231 (ER™),
MDA-MB-468 (ER ™) and T47-D (ER™*) cells were obtained from the American
Type Culture Collection (Manassas, Va.). The tumorigenic characteristics of
many of these breast cancer cell lines have been documented (45, 49). MCF-
7(40F) is an MCF-7 derivative selected for resistance to adriamycin that is E2
independent and ER™ (20). All MCF-7 derived cells were maintained in Dul-
becco’s modified Eagle’s medium (DMEM) (GIBCO-BRL) containing a high
glucose concentration, 5% fetal bovine serum (GIBCO-BRL), and 2 pg of
gentamicin sulfate per ml. T47-D, MDA-MB-468, and MDA-MB-231 cells were
maintained in DMEM containing 5% serum and a low glucose concentration.
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SKBR-3 cells were maintained in McCoy’s SA medium with 10% fetal bovine
serum. Incubation was at 37°C in a 5% CO, humidified environment. In exper-
iments requiring E2 depletion, cells were precultured for 7 days with several
changes of pheno! red-free DMEM containing 5% steroid-free fetal bovine
serum that had been adsorbed to dextran-coated charcoal for 45 min at 45°C. E2
was added from a 1 mM stock in ethanol to a final concentration of 1078 M for
the indicated times. Transfections were performed with Lipofectamine according
to the directions of the manufacturer (GIBCO-BRL). For stable transfection,
pcDNA3-IkBoSR-FLAG or CMV-FLAG-Bdl-3 was introduced into MCF-7/
LCCI1 cells, and clones were selected in medium containing 50 pg of G418 per
ml as previously described (52). Resistant clones were picked and expanded, and
then lysates were subjected to immunoblot analysis with the anti-FLAG anti-
body. For transient cotransfections, expression-reporter constructs and
pcDNA3-LacZ were introduced by using Superfect or Lipofectamine according
to the manufacturer’s directions. Cell extracts were harvested 48 h later and
analyzed in a BioOrbit 1250 luminometer by using luciferase assay reagent
(Promega). Reported values represent means * standard errors (SE) from
duplicate or triplicate experiments, normalized to LacZ activity determined by
methylumbelliferyl-B-glucuronide assay (1), and are representative of those from
at least three separate experiments.

EMSA analysis. Electrophoretic mobility shift assays (EMSA) were performed
with nuclear extracts from cultured cells or from tumors isolated as described by
Osborn et al. (41). NF-kB site oligonucleotides were obtained from Promega
(E3291) and end labeled with T4 polynucleotide kinase by using [y-**P]ATP
(Amersham). Five micrograms of nuclear extract was mixed with 5 ul of DNA
binding buffer (20 mM HEPES [pH 7.9], 0.2 mM EDTA, 0.2 mM EGTA, and 2
mM dithiothreitol in 50% glycerol), 5 ug of poly(dI-dC), and 0.2 ng of labeled
probe in a final volume of 20 u! and then incubated at room temperature for 25
min. Specific bands were verified with a 10 to 125 M excess of cold oligonucle-
otide 10 min prior to addition of the labeled probe, and equivalence of extract
loading was demonstrated by EMSA with a DNA fragment containing the con-
sensus Spl binding site (Promega). Samples were loaded on a 5% native poly-
acrylamide gel and run in nondenaturing Tris-glycine buffer. For supershift
experiments, 2 pg of each antibody was added to extracts and left for 1 h prior
to addition of the labeled probe.

Tumors in nude mice. Six-week-old ovariectomized nude mice (nu/nu CD-1)
were implanted subcutaneously with an estrogen release pellet (60-day-release
pellet containing 0.72 mg of E2; Innovative Research of America, Sarasota, Fla.).
Two days later, 2 X 10° cells derived from exponential cultures of wild-type
MCF-7 cells were injected subcutaneously into the flank of the animal. For LCC1
experiments, three pooled clones of either LCC1(IkBaS®) or LCC1(pcDNA3)
were injected subcutaneously into the contralateral flanks of 12 animals. Simi-
larly, cell suspensions containing three pooled MCF-7(FLAG) or MCF-
7(FLAG-Bcl-3) clones were injected subcutaneously into the contralateral flanks
of 12 mice, while another 3 mice received only MCF-7(FLAG-Bcl-3) in one flank
only. Tumors were allowed to form over a period of 4 to 6 weeks, and volumes
were determined by caliper measurements as previously described (44). The E2
release pellet was then removed, and regression was monitored until the tumor
reached 50% of its volume at pellet removal or over a time course as indicated,
at which point the animal was sacrificed and the tumor was removed. Tumor
protein lysates were prepared by snap freezing followed by pulverization under
liquid N,,. After the addition of radioimmunoprecipitation assay buffer (50 mM
Tris [pH 8.0], 150 mM NaCl, 0.1% sodium dodecyl sulfate [SDS}, 0.5% sodium
deoxycholate, 1% NP-40, 10 pg of phenylmethylsulfonyl fluoride per ml, 1 pg of
aprotinin per ml, and 0.02% sodium azide), samples were sonicated and then
incubated for 30 min on ice before centrifugation at 16,000 X g to remove
insoluble material. Protein was measured with Bio-Rad reagent.

Immunoblot analysis, Cell monolayers were washed twice with phosphate-
buffered saline and lysed in 400 pl of RIPA buffer per 107 cells for 30 min on ice.
Insoluble material was removed following centrifugation at 12,000 X g for 15
min, and soluble protein concentrations were determined with a Bio-Rad kit.
Proteins (20 pg) were separated on SDS-7.5 or 10% polyacrylamide gels and
transferred to polyvinylidene difluoride membranes. After exposure to primary
antibody, proteins were detected with peroxidase-conjugated second antibody
(Sigma) and chemiluminescent substrate (Dupont, NEN).

Immunocytochemistry and ISEL. Seven-micrometer frozen sections were cut
from LCCI(pcDNA3) and LCC1(IxkBoS®) tumors. For Bax immunostaining,
sections were fixed in formaldehyde for 30 min and incubated with polyclonal
Bax NH, terminus antibody followed by CY3-conjugated goat anti-rabbit immu-
noglobulin G (Jackson Laboratories). In situ end labeling (ISEL) was performed
with terminal transferase and biotin-16-dUTP (Boehringer Mannheim) followed
by CY2-labeled streptavidin (Amersham) as described previously (44). Sections
were visualized and imaged with a Zeiss Axiophot fluorescence microscope
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TABLE 1. Cell lines

Description®

Cell line

MCF-7 (early or late).....c.cesusivene Human mammary adenocarcinoma;
well differentiated, ER positive,
p53*/* (39), controlled passages
(early, 46 to 48 passages; late,
156 to 159 passages)

T47-D Human mammary ductal
carcinoma, differentiated
epithelial, ER positive, p53~/*
(39

MIH MCF-7 (controlled passage)
inoculated into ovariectomized
nude mice; slow-growing tumor
isolated 6 months after
inoculation and reestablished in
vitro, ER-positive and E2-
responsive in vivo (14)

LCC1

Isolated from rapidly growing
tumors derived from second
inoculation of MIII cells into
ovariectomized nude mice and
then reestablished in vitro; ER-
positive and E2-responsive in
vivo, increased constitutive
expression of some E2-regulated
genes (9)

MDA-MB-231......cocoevurvreencerinenne Human mammary adenocarcinoma;

poorly differentiated, ER
negative, p53~/~ (39)

MCF-TAPR(40F) ..uncvrveenersraressmnnnns MCF-7 cells selected for 40-fold

resistance to doxorubicin

(adriamycin) [wild-type MCF-7

EDs,, 14.5 nM; MCF-74PR(40F)

EDy, 474 nM (20)], p53™* (39),

ER negative

* EDsy, 50% effective dose.

equipped with Northern Eclipse software (EMPIX Imaging Inc., Mississauga,
Ontario, Canada).

RESULTS

LCC1 cells display elevated NF-xB DNA binding activity.
Evidence shows that ER expression in breast cancer cell lines
is associated with low baseline NF-kB activity, while breast
cancer cell lines devoid of ER have high constitutive levels of
NF-«B activity (36). Although LCCI1 cells are E2 independent
they express functional ER as determined by their increased
growth rate in the presence of E2 (14). Table 1 presents a
summary of the cell lines and isolates used in this study. In
order to determine whether NF-kB activity correlates with E2
dependence, nuclear extracts from ER* T47-D and ER*
LCC1 cells were assayed for NF-kB DNA binding, and the
NF-«B activity was compared with that in MCF-7 cells selected
for resistance to adriamycin [MCF-74PR(40F) cells]. These
cells have lost expression of the ER and are able to form
tumors efficiently in ovariectomized nude mice (20). Figure 1A
shows the results of an EMSA which demonstrates that, as
predicted from the literature on NF-«B levels in ER™ breast
cancer cell lines, MCF-7(40F) cells also contain high levels of
constitutive NF-kB DNA binding activity associated with fast-
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and slow-migrating complexes. Conversely, T47-D cells con-
tained very low levels of NF-kB DNA binding activity, as pre-
viously reported (36). In contrast, LCC1 cells displayed inter-
mediate levels of NF-kB activity associated primarily with the
faster-migrating complex. In order to directly compare NF-xB
DNA binding activities of cells derived from the same isolate
of MCF-7 cells, we prepared nuclear extracts from the early
passage of parental MCF-7 cells, MIII cells, and LCC1 cells
and contrasted these NF-kB DNA binding complexes with
those from ER™ MDA-MB-231 cells. The results in Fig. 1B
show again that LCC1 cells had high levels of NF-«B activity
compared with the other MCF-7-derived cells. Similar to
MCF-7(40F) cells, MDA-MB-231 cells contain a high level of
constitutive NF-kB activity associated with two different com-
plexes. The EMSA in Fig. 1C, in which an Spl binding site
DNA fragment was used as a probe, contained equivalent
amounts of the indicated nuclear extracts used for Fig. 1A and
B and demonstrates that quantitative differences were not a
function of extract loading. To determine the composition of
the NF-kB complexes in LCC1 cells relative to ER™ cells, we
supershifted nuclear extracts from LCC1 and the ER™ MCF-
7(40F) and MDA-MB-231 cells with antibodies against NF-xB
proteins. Figure 1D shows clearly that while pS0 was present in
complexes from all three cell lines, the ER™ lines contained
markedly higher levels of the slower-migrating p65/RelA com-
plex. The p50 antibody also supershifted the p65-associated
complex, thus indicating that the upper complex is a het-
erodimer of p50 and p65. Thus, NF-kB subunits appear to be
differentially activated in breast cancer cell lines. Despite its
commercial designation for supershift analysis, we were unable
to supershift any of the complexes with this p52 antibody or
with an antibody obtained from the laboratory of A. S. Baldwin
which reportedly was capable of supershifting p52 but only on
an erratic basis, and therefore we cannot formally rule out that
the lower-migrating complex also contains heterodimers of
P52/p50. Note that all of the cell lines were cultured with
identical serum concentrations, thereby eliminating the influ-
ence of differential contributions of serum growth factors on
NF-kB activity.

Not all DNA-bound NF-kB is transcriptionally active (56);
therefore, NF-«B transactivational activity was tested by tran-
sient transfection of an NF-«xB reporter gene. The graph in Fig.
1E shows that the basal level of NF-kB-luciferase reporter
gene activity in LCC1 cells was about fivefold higher than that
in the E2-dependent MCF-7(early) cells. Since our supershift
analysis revealed major differences between the predominant
NF-«kB DNA binding complexes in ER* cells and ER™ cells,
we performed immunoblot analysis on nuclear extracts from
these cell lines to ascertain the relative levels of these proteins.
The results in Fig. 1F indicate that MCF-7(early) nuclear ex-
tracts contain only trace levels of p65, while LCC1 nuclei
contain a slightly higher level. In contrast, the ER™, E2-inde-
pendent MCF-7(40F) and MDA-MB-231 cells harbor much
higher nuclear levels of this protein. When the same extracts
were assayed for p50 immunoreactivity, significantly less p50
was present in MCF-7(early) cells than in the other cells. The
LCC1 and the ER™ cell lines contained similar nuclear levels
of p50. Given that p50 heterodimerizes with p65 in these cells,
the nuclear level of p50 would affect both the fast- and slower-
migrating NF-kB complexes. The relative nuclear content of
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FIG. 1. NF-xB DNA binding activity increases with acquisition of E2 independence. (A and B NF-kB complexes in 5 pg of nuclear extract from
T47-D, LCC1, and MCF-7(40F) cells (A) and from MCF-7(early passage), MIII, LCC1, and MDA-MB-231 cells (B) were subjected to EMSA as
described in Materials and Methods, using an oligonucleotide containing a consensus NF-kB binding site. Arrows indicate fast- and slow-migrating
complexes. A 10-fold excess of cold oligonucleotide (comp) was used for competition of specific bands in duplicate MCF-7(40F) and MDA-MB-231
lanes. (C) Five micrograms of the same nuclear extracts used for panels A and B was subjected to EMSA with the consensus Sp1 enhancer element
as a probe. (D) Antibody supershift analysis of NF-kB complexes. NF-kB complexes from the indicated cell lines were incubated with antibodies
against NF-kB proteins prior to DNA binding as described in Materials and Methods. Arrows indicate fast- and slow-migrating complexes;
arrowheads identify antibody-shifted complexes. NS, normal serum; comp, a 10-fold excess of unlabeled probe was used to compete with specific
bands. (E) Results from transient transfection of MCF-7(early) and LCC1 cells with the 3X-NF-«kB;-luciferase and mutant-luciferase reporter
constructs. The results represent values from triplicate experiments = SE and were normalized to B-galactosidase activity from a cotransfected
pCMV-LacZ plasmid. (F) Immunoblot analysis of nuclear p65, p50, and p52 in breast cancer cell lines. Ten micrograms of each nuclear extract
was reacted with either anti-p65 antibody or an anti-p50 antibody which also cross-reacts with p52.

p52 detected by this antibody was low and was essentially
equivalent across all cel! lines. Thus, nuclear NF-kB proteins
and NF-kB DNA binding complexes are both qualitatively and
quantitatively different in breast cancer cell lines and isolates
grown in vitro under the same culture conditions. Progression

appears to correlate with increased levels of NF-«B consisting
predominantly of p50 dimers as well as with a discernible
increase in the formation of p65/p50 DNA binding complexes.

E2 regulates NF-xB DNA binding activity in vivo and in
vitro. Hormone-dependent breast tumors undergo regression
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FIG. 2. E2 regulates NF-xB DNA binding in vitro and in vivo. (A) Nuclear extracts (5 pg) from MCF-7 and MCF-7/L.CC1 cells cultured in
DMEM (lanes C) or in E2-free medium for the indicated number of days were subjected to EMSA with the NF-xB oligonucleotide. A 10-fold
excess of cold competing oligonucleotide (comp) preferentially competes the specific NF-kB complexes. n.s., nonspecific band. The lower panel
shows a gel shift of the Sp1 consensus oligonucleotide with the same extracts to control for extract loading. (B) MCF-7 tumors were grown in
ovariectomized nude mice implanted with an E2 release pellet. Tumors were obtained prior to E2 pellet removal (control) and at the indicated
times following pellet removal. Nuclear extracts were incubated with a labeled NF-kB oligonucleotide and subjected to EMSA as described in
Materials and Methods. A 50-times concentration of cold oligonucleotide (comp) was used to compete specific binding. In the lower panel the same
extracts were assayed for binding to the consensus Sp1 element. (C) Tumor extracts from day 6 after the E2 pellet removal described above were
used for supershift analysis with antibodies (Ab) against p50 and p65. Arrowheads indicate supershifted complexes. Ns, normal serum. (D) MCF-7
cells cultured in stripped medium without E2 for 10 days were treated with E2 or vehicle (—) for 3 days. Nuclear extracts were isolated, and 5 pug
was subjected to EMSA with the NF-«xB site. Protein binding to the Sp1 element from the same extracts is shown in the panel on the right.

after E2 removal by ovariectomy or following antiestrogen
therapy as the result of programmed cell death of a large
majority of the cells (29, 44). A subset of these cells will escape
apoptosis as a result of acquisition of hormone independence

and/or antiestrogen resistance. Since steroid hormones are
known to modulate the levels of NF-kB activity, we tested the
effects of growth in E2-free medium on the NF-«xB DNA bind-
ing activity of MCF-7 and LCCI1 cells. Figure 2A shows that
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NF-kB activity began to increase in MCF-7 cells within 4 days
after the medium was replaced with E2-free medium and con-
tinued to rise over the 12-day period studied. Thus, NF-xB
activity in ER* MCF-7 breast cancer cells is highly responsive
to removal of E2 in vitro. As expected, LCC1 cells have a high
constitutive level of NF-kB DNA binding activity, which un-
derwent a slight increase within 12 days following culture in
E2-free medium. In order to determine whether this increased
level of NF-kB activity also occurs in MCF-7 tumors in vivo, we
grew MCF-7 tumors in nude mice implanted with E2 release
pellets and isolated nuclear extracts from a solid tumor every
day for 7 days and again at 18 days after pellet removal. The
EMSA in Fig. 2B shows that, compared with an that of an
actively growing tumor in an animal implanted with an E2
release pellet, NF-kB activity began to increase within 3 days
following E2 pellet removal and rose continuously to a maxi-
mum within the 7-day period. As the tumors regressed, MCF-7
NF-kB DNA binding activity remained elevated in nuclear
extracts for 18 days after E2 pellet removal. To profile NF-kB
complexes in vivo from E2-depleted MCF-7 xenografts, we
similarly assayed DNA binding in nuclear extracts from re-
gressing MCF-7 cell tumors. Supershift analysis of nuclear
extracts from the MCF-7 tumor excised at day 6 following E2
release pellet removal (Fig. 2C) shows again that although the
NF-kB activity was primarily p50/p50 (or possibly pS0/p52), an
anti-p65 reactive complex was also present. Thus, both NF-xB
complexes are also detectable in regressing tumors and could
potentially participate in the evolution of the E2-independent
phenotype. Taken together, these results show that E2 removal
both in vivo and in vitro is a potent stimulus in breast cancer
cells of NF-kB activity, which might then contribute to E2
independence. One interpretation of this result is that E2 re-
moval results in survival of cells with high endogenous levels of
NF-«B rather than an induction of NF-kB activity. In order to
address this issue, we tested the reversibility of the effect of E2
withdrawal on NF-kB DNA binding. MCF-7 cells were grown
in E2-free medium for 10 days and then treated with vehicle or
E2 for 72 h. The results in Fig. 2D demonstrate that, as ex-
pected, NF-kB activity was high in MCF-7 cells cultured with-
out E2. In contrast, levels were strongly reduced in cells which
had be reexposed to E2, thus indicating regulation of NF-kB
binding rather than an altered composition of the cell popu-
fation.

Expression of ER proteins in MCF-7 sublines. Previous
work by Nakshatri et al. (36) showed that loss of ER expression
correlated with the acquisition of constitutive NF-«kB activity.
As LCCI1 cells are E2 independent, it was possible that these
cells had in fact begun to downregulate ER expression, thus
resulting in higher levels of NF-«B activity. We (this work) and
others (11, 17) have reported that E2 can modulate NF-xB
activity; thus, alterations of ER levels in the presence or ab-
sence of E2 might indirectly affect NF-kB activity. In order to
determine the relative expression levels of both of the ERs and
to see whether E2 alters these levels, we performed immuno-
blot analysis of LCC1 cells, MIII cells, MCF-7(early) cells, and
MCF-7 cells of undetermined passage treated with E2 or ve-
hicle for 72 h. Figure 3 shows that, as expected, all cell lines
express the 68-kDa ERa. Interestingly, LCC1 cells express a
slightly higher level of ERa than the other cells. Similarly,
immunoblotting for ERB indicated that all of the cell lines
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FIG. 3. Immunoblot analysis of ER proteins. Twenty micrograms
of whole-cell protein extract from MCF-7 and derived sublines treated
with E2 or vehicle for 72 h was separated by SDS-polyacrylamide gel
electrophoresis and immunoblotted with antibodies against ERa and
ERB. The expression of actin was used as an internal loading control.
Numbers on the right indicated molecular masses in kilodaltons.

expressed a 66-kDa protein corresponding to ERB. Again,
levels appeared elevated in LCC1 cells. There was no indica-
tion that either of the ERs was subject to E2 regulation in MIIT
or MCF-7 cells; however, E2 reproducibly increased both ERa
and ERB of MCF-7(early) cells and the level of ERB in LCC1
cells above levels in vehicle-treated cultures. Thus, despite this
marked increase in constitutive NF-xB activity in LCC1 cells,
they retain high-level expression of ERa and ERB.

Estrogen regulates Bcl-3 protein expression. The supershift
experiments described above indicated that the NF-kB com-
plex in LCC1 cells is composed primarily of p50, which in itself
is transcriptionally inactive; however, activation of the tran-
scriptional function of this complex has been shown to occur
through complex formation with Bcl-3 (31). If pS0 complexes
are to be active in tumors following E2 removal, the accessory
factor Bcl-3 might contribute to this activity. To investigate
this, we subjected protein extracts from MCF-7 tumors to
immunoblot analysis at intervals after removal of the E2 re-
lease pellet. The results in Fig. 4A show that control tumors
contained low levels of Bcl-3, while the levels rose significantly
within 1 day after E2 removal and remained elevated for the
balance of the study. To assess whether Bcl-3 expression in-
duced by E2 removal was principally due to the absence of E2
or was secondary to other effects on the tumor milieu, we
analyzed extracts from LCCI cells cultured in E2-free or E2-
supplemented medium over several days. The results in Fig. 4B
show that culture of LCClcells in the absence of E2 increased
the expression of Bcl-3 within 1 day compared with culture in
E2-supplemented medium. The differential expression was al-
ready maximal by 2 days and remained so throughout the 4-day
study period. Since NF-xkB DNA binding is constitutively
higher in E2-independent LCC1 cells and MDA-MB-231 cells
than in MCF-7 cells and MIII cells in the early stage of E2
independence, we wished to determine whether basal levels of
Bcl-3 might follow the same pattern. Figure 4C shows a West-
ern blot analysis of Bcl-3 levels in extracts from early- and
late-passage MCF-7 cells, MIII cells, LCC1 cells, and several
ER™ cells. The results indicate that levels of Bcl-3 are highest
in the E2-independent lines, including LCC1 cells. A second
comparison of Bcl-3 levels in MCF-7(late), MCF-7(40F) and
MDA-MB-468 cells (Fig. 4D) shows that, unexpectedly, MCF-
7(40F) cells express Bcl-3 at approximately the same level as
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FIG. 4. Bcl-3 is regulated by E2 in breast cancer cells in vivo and in vitro. (A) Bcl-3 expression in MCF-7 breast cancer tumors was determined
by immunoblotting of 15 pg of tumor protein extracts on the indicated days after E2 release pellet removal. The molecular mass in kilodaltons
is shown on the right. (B) Basal expression of Bcl-3 in E2-dependent and -independent breast cancer cells. Whole-cell protein extracts were isolated
from the indicated breast cancer cell lines grown in appropriate pheno! red-containing medium. In all experiments,15 pg of each extract was
subjected to immunoblot analysis with the Bcl-3 antibody and either actin or GAPDH (glyceraldehyde-3-phosphate dehydrogenase) was used as
a protein loading control. (C) Immunoblot to detect Bcl-3 expression in vitro in the presence and absence of E2. LCC1 cells were cultured in
DMEM or E2-free medium supplemented with E2 or vehicle as described in Materials and Methods for the indicated times. Lane c, control
consisting of extracts from cells cultured in unstripped medium containing phenol red. (D) Comparison of Bcl-3 expression in the indicated cell

lines as described for panel C.

MCF-7 cells. However, it is important to note that MCF-
7(40F) cells were selected not for E2 independence but rather
for adriamycin resistance and therefore do not necessarily rep-
resent a natural stage in hormone progression. Moreover, we
cannot rule out that regulation of Bcl-3 expression in other
ER™ cell lines is accomplished by the same mechanism as in
ER™ cell lines.

Bcl-3 augments MCF-7 tumor growth but not E2 indepen-
dence. Bcl-3 has recently been shown to stimulate growth as
well as provide a survival function in some cells (35, 47, 55).
The results described above clearly show that p50/50 (and
possibly p50/p52) complexes predominate in LCC1 cells, and
the increased expression of Bcl-3 suggests that this protein
could play a role in E2 independence. To assess the sufficiency
of Bcl-3 expression in conferring E2 independence, we stably
transfected MCF-7(early) cells with a FLAG-tagged Bcl-3 ex-
pression construct. Figure 5A shows an immunoblot of lysates
from three pooled MCF-7(FLAG-Bcl-3) clones and three
pooled MCF-7(FLAG) contro! clones reacted with anti-FLAG
to detect transfected protein (upper panel) and anti-Bcl-3 (sec-
ond panel) in order to compare the relative levels of Bcl-3 in
these clones. Bcl-3 expression has been associated with induc-
tion of the cyclin D1 gene, and immunoblot analysis of the
same nuclear extracts with an anti-cyclin D1 antibody showed
that the constitutive level of cyclin D1 expression was increased
in the transfected cells (third panel). Nuclear extracts from
these pooled clones were also used for an EMSA to detect
NF-«kB DNA binding activity. Figure 5B shows that, consistent
with its ability to interact with p50, the pS0 complex was aug-
mented in MCF-7(FLAG-Bcl-3) clones compared with con-
trols when equal amounts of nuclear extract were assayed,
suggesting a possible stabilization of the pS0 DNA binding

complex. We then used both MCF-7(FLAG-Bcl-3) and MCF-
7(FLAG) clones to generate tumors in ovariectomized nude
mice implanted with an E2 release pellet as described in Ma-
terials and Methods. The growth of control tumors [MCF-
7(FLAG)Jand MCF-7(FLAG-Bcl-3) tumors was monitored
over 36 days, and the results are shown in Fig. 5C. Eleven of
the 15 sites injected with MCF-7(FLAG-Bcl-3) cells produced
tumors. On the other hand, only 4 of 12 control sites formed
tumors over the same time period. Of the tumors that formed,
the mean volumes (= SE) were 258 + 45 mm® for MCF-
7(FLAG-Bcl-3) tumors and 67 + 24 mm?® for MCF-7(FLAG)
tumors. Tumor regression was monitored after E2 release pel-
let removal until the tumor was 50% of its original size at pellet
removal. If Bcl-3 conferred E2 independence, we expected that
MCF-7(Bcl-3) tumors would either remain stable or continue
to grow. However, comparison with control MCF-7(FLAG)
tumors showed virtually identical regression rates, requiring 14
days for the latter tumors and 15.5 days for MCF-7(FLAG-
Bcl-3) tumors to regress to 50% of the original tumor volume.
Thus, Bcl-3 alone does not render MCF-7 tumors stable after
E2 withdrawal, suggesting that Bcl-3-mediated increases in p50
and/or p52 activity are either of insufficient magnitude or can-
not confer an E2-independent phenotype. In contrast, the
higher rate of tumor establishment and rapid tumor growth of
MCF-7(FLAG-Bcl-3) cells compared with control cells shows
that Bcl-3 can augment the growth and tumorigenicity of
breast cancer cells.

Induction of both p65- and p50-associated activity after E2
withdrawal in vitro and in vivo. The relative levels of p65 and
pS0 in nuclei from MCF-7(early) and LCC1 cells and the
results in Fig. 1B suggested that there were both qualitative
and quantitative differences between NF-kB complexes in the



6894 PRATT ET AL.

A 2 B
Q
0 @
S 3
(1 (1
MCF-7
75 ~
s < FLAG-Bcl-3
50-
75 -
e m e <+ Bcl-3
50~ . (anti-Bcl-3)
37- fin D1
[ TeTI y ‘—
25 - L Cyciin

e e <+ actin

MoL. CELL. BiOL.

2
O
a
3
i
N
iL
O
=

MCF-7(FLAG)

-~NF-KB

Sp1

Effect of Bcl-3 on MCF-7 Tumor Growth

H
H
;
< I: "
- " w ~ (-]

'EIMCF-7(FLAG-Bet3)
BMCF-IFLAG)

FLAG-BcI-3. Shown is immunoblot analysis of cell extracts from three pooled clones of each transfectant with an anti-FLAG antibody. The lower
panel shows a duplicate blot following incubation with anti-Bcl-3 to detect both endogenous and transfected protein. Sizes of molecular mass
markers are shown on the left in kilodaltons. (B) EMSA to assess the effects of Bcl-3 overexpression on NF-kB DNA binding. Five micrograms
of nuclear extract from pooled MCF-7(FLAG) and MCF-7(FLAG-Bcl-3) clones was used for gel shift analysis with either the NF-kB or Sp1
sequence as a probe. Samples were assessed simultaneously on the same gel. (C) Tumor volumes derived from MCF-7(FLAG) and MCF-7(FLAG-
Bcl-3) cells 36 days after cell inoculation. Mice 1 to 12 were injected subcutaneously with pooled clones of control or MCF-7(FLAG-Bcl-3) on
either flank. Mice 13 to 15 received only an MCF-7(FLAG-Bcl-3) inoculation.

hormone-dependent and hormone-independent cells. To char-
acterize the NF-kB complexes in these two isolates, it was
necessary to use MCF-7(early) cells which were cultured in
E2-free medium, since without E2 withdrawal there was insuf-
ficient NF-xkB DNA binding activity to evaluate. We performed
an EMSA and supershift analysis of nuclear extracts from
MCF-7(early) and LCC1 cells which, for consistency, were

both derived from culture in E2-depleted medium for 12 days
(Fig. 6). Supershift analysis with the p50 antibody again re-
vealed the presence of a major complex containing p50, while
the p52 antibody was unable to supershift any complex. Im-
portantly, the p65 antibody identified a strong p65-associated
complex in the LCC1 cells. By contrast, the level of p65 DNA
binding activity was significantly lower in the MCF-7(early)
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FIG. 6. Induction of both p65- and p50-associated NF-kB activity following E2 withdrawal. Nuclear extracts were collected from MCF-7(early)
and LCCI cells cultured for 12 days in phenol red-free medium with charcoal-stripped serum to induce NF-kB activity. Five micrograms of each
extract was used for EMSA with the NF-xB probe and antibody supershift analysis with the indicated antibodies (Ab). The same quantity of extract
was also subjected to EMSA with the Sp1 probe as a control for extract loading.

nuclear extracts. Taken together with the nuclear expression of
p65 and p50 in MCF-7 and LCCI cells, these results show that
after E2 withdrawal, LCC1 cells contain significantly more
p65-associated activity than do their E2-dependent counter-
parts.

LCC1 cells constitutively expressing IkBa revert to an es-
trogen-dependent tumor phenotype. In order to test the hy-
pothesis that NF-«kB activity contributes significantly to the
E2-independent phenotype, we stably transfected LCC1 cells
with a FLAG-tagged degradation-resistant form of the NF-xB
inhibitor IxBa called IkBaS® (27). IxBa most effectively in-
hibits p65-containing complexes (26), although some minimal
inhibition of p50/p50 activity has also be documented (30).
Figure 7A shows immunoblot analysis with the anti-FLAG
monoclonal antibody of four positive clones and control ex-
tracts from pcDNA3-transfected LCC1 cells. The effects of
IkBaSR expression on relative levels of nuclear NF-«kB com-
plexes were tested by supershift analysis. Figure 7B shows that
IkBoS® expression had little effect on the abundant, fast-mi-
grating p50-containing complex. In contrast, the p65 complex
was virtually absent from the LCC1(IkBaSR) cells. To confirm
that any reversion of LCC1(IkBa®) tumors to E2 dependence
was associated with decreased nuclear levels of p65, we per-
formed immunoblot analysis of nuclear extracts from
LCC1(pcDNA3) and LCC1(IxBaS®) tumors. Figure 7C shows
that p65 levels are markedly reduced in LCC1(IkBaS®) tumors
compared with controls. On the other hand, both the p50 and
p52 nuclear contents remained unaltered in these tumor types.
The p50 antibody, which simultaneously detects p52 in extracts
from cultured cells, did not detect p52 in the tumor extracts. To
assess p52, we utilized a separate anti-p52 antibody, which
indicated that the levels of nuclear p52 were unchanged in

IkBoSR-expressing tumors. Evaluation of the effects of IkBo®®
on NF-kB transcriptional activity following transient transfec-
tion of the three highest-expressing clones with the 3X-NF-«kB
reporter gene or the same reporter gene containing a mutant
NF-«kB response element showed that transcriptional activity
in the three LCC1(IxBaSR) clones ranged from 20- to 100-fold
less than that in the control LCC1(pcDNA3) clones (Fig. 7D).
We then inoculated three pooled LCC1(pcDNA3) clones and
pooled LCC1(IxkBaS®) clones 1, 3, and 4 into the contralateral
sides of ovariectomized nude mice implanted with an E2 re-
lease pellet. Tumors from both groups grew at various rates
under these conditions of hormone replacement, and there was
no significant difference in the final tumor volumes [mean *
standard deviation, 183 = 88 mm? for LCC1(pcDNA3) tumors
and 160 * 88 mm?® for LCC1(IkBoS®) tumors]. Tumor vol-
umes were measured 2 weeks after E2 pellet removal, and the
percent regression was calculated. Figure 7E is a histogram
showing the results of this analysis. While LCC1(pcDNA3)
tumor volumes either remained stable or continued to grow
after pellet removal, LCC1 (IkBaS®) tumors underwent sig-
nificant regression. In cells engaged in apoptosis through the
mitochondrial death pathway, the Bax protein undergoes a
conformational change exposing its otherwise buried N termi-
nus associated with mitochondrial translocation (37). Figure
7F depicts sections from LCC1(pcDNA3) and LCC1(IxBaS¥)
tumors immunostained with an antibody against the N termi-
nus of Bax, showing high levels of translocated Bax in the
LCC1(1kBaS®) tumors but not in control tumors. Moreover,
detection of DNA fragmentation in apoptotic cells by using
ISEL showed that LCC1(IkBaS®) tumors contained large
numbers of apoptotic nuclei, while LCC1(pcDNA3) tumors
had almost none. Thus, NF-kB inhibition is sufficient to restore
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FIG. 7. MCF-7/LCC1 cells constitutively expressing IxkBaS® lose p65/pS0 activity and revert to an E2-dependent tumor phenotype. (A) Im-
munoblot analysis to detect FLAG-tagged IkBaSR expression in stable LCC1 clones with an anti-FLAG monoclona! antibody. Clones are
designated 1 to 4. CON, control. (B) Five micrograms of nuclear extract from LCC1(pcDNA3) and LCC1(IxBaS®) cell cultures was subjected to
EMSA and antibody (Ab) supershift analysis as described in Materials and Methods. NS, normal serum. (C) Nuclear extracts (10 pg) from
LCC1(IkBaS®) and LCC1(pcDNA3) tumors were analyzed by immunoblotting for expression of p65, pS0, and p52. The p50 antibody did not
identify a p5S2 band from these extracts, and therefore a p52-specific antibody was used to assess changes in expression between clones. (D) NF-«xB
activity was evaluated in LCC1(IxBa®) clones 1, 3, and 4 (from left to right) following transient cotransfection of the NF-kB-luciferase and LacZ
reporter genes. The results presented are the averages from two experiments, expressed in arbitrary units, and are normalized to B-galactosidase
activity. (E) Three pooled clones each of LCC1(pcDNA3) and LCC1(IkBaS®) cells were inoculated into ovariectomized nude mice implanted with
an E2 release pellet. The histogram shows the percent regression of LCC1 (n = 11) and LCC1(IkBeS®) (n = 9) tumors following removal of the
release pellet. Bars represent standard errors. (F) Sections of LCC1 and LCC1(IkBaSR) tumors were subjected to ISEL to detect free 3'-OH DNA
ends in apoptotic nuclei or immunostained with an antibody against the NH, terminus of Bax to detect activated mitochondrial Bax.
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FIG. 8. Expression of IkBaSR downregulates Bcl-2 expression.
(A) Whole-cell extracts from LCC1(pcDNA3) (lanes P) and
LCC1(IxkBaS®) (lanes I) cell tumors at different days following E2
pellet removal were analyzed by immunoblotting for expression of
Bel-2. Blots were stripped and reacted with antibody against Bcl-x.
Loading of the gel was controlled for by reactivity with an actin anti-
body. (B) LCC1 cells stably transfected with pcDNA3 or IkBoSR to-
gether with MIIT and M(late) cells were cultured in E2-free medium
for 10 days and then treated with E2 or vehicle for 48 h. E2 regulation
of Bel-2 expression in vitro in the MCF-7-derived cells and clones was
assessed by immunoblotting of 15 pg of cell extract. Actin was used as
an internal loading control for all blots. Molecular masses in kilodal-
tons are shown on the right.

an E2-dependent phenotype to LCC1 tumors, rendering them
apoptotic after E2 removal through a mitochondrial pathway
of cell death involving Bax translocation.

Effect of NF-kB inhibition on E2-regulated genes. Recent
work has shown that expression of both of the antiapoptotic
proteins Bcl-2 and Bcl-x is induced by NF-«B in neurons (10,
51). Since LCC1(I-xBaS®) tumors undergo apoptotic regres-
sion following E2 withdrawal, we tested whether the reduced
NF-«B in these cells was associated with a reduction in Bcl-2
and/or Bel-x. We first considered the expression of these pro-
teins in the respective tumors on various days following E2
release pellet removal. The results in Fig. 8A show that Bcl-2
protein levels were strongly reduced in LCC1(IkBaS®) cells
compared with LCC1(pcDNA3) cells for the entire period
after withdrawal of E2. In contrast, Bcl-x expression in the two
tumor types was indistinguishable. During the initial charac-
terization of MIII and LCC1 cells, it was found that the ex-
pression of a number of normally E2-responsive genes was
constitutively upregulated and no longer responsive to E2 (9).
This was also true of another independent MCF-7 subline
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selected for E2-independent growth (13). E2 can also regulate
expression of Bcl-2 (43, 52), although the promoter for this
gene is complex and may also be regulated by mutant p53. A
comparison of the expression of Bcl-2 and its regulation by E2
in vitro is shown in Fig. 8B. Unlike for several other E2-
regulated gene products, LCC1 cells contain lower levels of
Bcl-2 than do parental MCF-7 cells. This expression is refrac-
tory to E2 regulation. As observed in the tumors, stable ex-
pression of IxBaS® further reduced Bcl-2 expression in vitro,
and this was accompanied by a weak reinstatement of E2
regulation. Importantly, we have previously shown that consti-
tutive Bcl-2 expression is sufficient to prevent regression of
MCF-7 tumors in nude mouse xenografts (44). Taken together,
these results suggest that the reduction in Bcl-2 expression in
LCC1(IkBoS®) tumors could contribute to the E2 withdrawal-
induced apoptosis and subsequent regression.

DISCUSSION

The events which precede the loss of E2 dependence and a
more tumorigenic phenotype in breast cancer cells are not
understood. The LCC1 subline of the E2-dependent human
breast cancer cell line MCF-7 was selected under conditions of
E2 depletion, resulting in an experimental model of progres-
sion in that these cells grow in a hormone-independent manner
but retain wild-type levels of ER expression. Apart from the
observation that some E2-regulated genes are constitutively
expressed in these cells, little is known about the cellular events
that contribute to the loss of E2 dependence. While it is clear
that NF-«B activity rises in the context of carcinogen-induced
mammary epithelial cell transformation (28), in general there
is also a marked increase in constitutive NF-«B activity in ER™
cells compared with ER* cells (36). Using E2-independent
LCCI1 cells, the work described here shows that an increase in
constitutive NF-kB activity occurs in cells selected for E2 in-
dependence prior to loss of ER expression. Moreover, inhibi-
tion of this NF-kB activity is sufficient to confer sensitivity to
estrogen removal on LCC1 tumors through a mitochondrial
death pathway. This observation also clearly indicates that
LCCI cells have not sustained damage to their apoptotic ma-
chinery during progression toward E2 independence. In con-
trast to K-BALB murine fibrosarcoma cells and mouse mam-
mary tumor cells, in which tumorigenicity was completely
blocked by inhibition of NF-«B activity (7, 22), at least in
animals supplemented with E2, LCC1(IkBoS®) cells were able
to form tumors as well as control cells. Thus, inhibition of
NF-«B activity through IkBa does not interfere with E2-driven
tumorigenicity.

The process of selection requires epigenetic changes which
render some cells resistant to the selective pressure. Therefore,
to investigate the mechanism by which this occurs, we have
analyzed the consequence of E2 removal on NF-kB activity
both in vitro and in tumors. The reduction in E2 levels follow-
ing remova! of the E2 pellet in ovariectomized athymic mice
and culture in E2-free medium results in a rapid increase in
NF-kB levels in MCF-7 cells. The kinetics were fastest in vivo,
which may reflect E2 clearance through metabolism. Addition-
ally, cells in culture were exposed to estrogenic phenol red
prior to removal to phenol red-free stripped medium, and the
clearance rate of phenol red in these cells. Several reports have
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previously shown that the ligand-bound ER is involved in re-
ciprocal regulation with NF-«kB (reference 17 and references
therein). Both ERa and the ERP can inhibit NF-xB-depen-
dent transcription in a manner involving the ligand binding
domain of the receptor but not the squelching of coactivator
proteins (11). Discreet parts of the ER ligand binding domain
surface are required for this transrepression of NF-«B activity,
which are separate from those involved in transactivation (53).
Estrogen has been clearly demonstrated to repress NF-xB
activity, and correspondingly, NF-kB induction follows E2
withdrawal. Estrogen removal over the time course of our
experiments in vitro is only cytostatic for MCF-7 cells. Given
this and the fact that NF-kB activation is reversed by reintro-
duction of E2 in vitro, it is unlikely that the induction of NF-kB
DNA binding seen after removal of E2 in vivo is the result of
selection for cells with higher basal levels of NF-kB. Moreover,
NF-«B is a positive regulator of cell growth (12), thus arguing
against subpopulations of MCF-7 cells containing constitu-
tively elevated NF-kB activity.

Since the predominant NF-kB complex in MCF-7 and LCC1
cells is either a homodimeric complex of p50 or a heteromeric
complex of p50 and p52, activation after hormone removal
would not be expected to yield a strong transcriptional re-
sponse. Our finding that the level of the p50-coactivating pro-
tein Bcl-3 is increased after E2 removal provides a mechanism
by which E2 withdrawal induces p50-associated NF-«B activity
in breast cancer cells that do not contain high levels of the
alternate transcriptionally active partner, p65. The observation
that Bcl-3 increases the E2-dependent growth of MCF-7 cells
may be due in part to the reported ability of Bcl-3/p50/p52
complexes to induce cyclin D1 (23, 55) as well as stimulate
AP-1-mediated transactivation and cellular proliferation (35).
Although the Bcl-3 regulatory regions contain NF-xB en-
hancer elements (40) that are responsive to NF-kB (8, 10), this
mechanism cannot account for the rapid increase in Bcl-3
protein expression observed both in vitro and in vivo after E2
withdrawal, suggesting that Bcl-3 expression may be more di-
rectly under control of the ER.

The present data indicate that p50 and p65 are differentially
expressed during progression and that early in this process
NF-«B activity increases and is composed primarily of pS0/p50
(and possibly p50/p52), along with a smaller increase in p50/
p65. Highly malignant ER™ cells have both p65/p50 and p50
(p50/p52)-associated NF-kB DNA binding activity. Evidence
suggests that the p65 protein plays a critical role in tumorigen-
esis (22). Nuclear extracts from ER* MCF-7 cells of limited
passage express only trace levels of p65 and comparatively low
levels of p50. LCC1 nuclei contain slightly elevated p65, al-
though the level remains significantly lower than that in the
ER™ cell lines. However, LCC1 p50 nuclear expression is es-
sentially similar to that in the E2-independent breast cancer
cell lines. Together with the finding that basal Bcl-3 expression
in LCC1 cells is also higher than that in the parental MCF-7
isolate, these results can account for the higher constitutive
level of both NF-kB complexes in LCC1 cells. The expression
pattern of p65 and p50/p52 in breast tumors is unclear. It has
been suggested that breast cancer cell lines but not tumors
express p65. While Cogswell et al. (16) detected only low levels
of p65 protein in a panel of four breast tumor samples, only
one of these was ER ™. Supershift analysis was done on an ER*
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tumor which, in agreement with our results, showed primarily
p50-associated NF-kB DNA binding activity. Sovak et al. (50)
detected nuclear p65 in 15 of 23 tumor samples, although that
study did not differentiate on the basis of ER status. Thus, it
appears that NF-kB proteins and complexes are differentially
present in breast cancer cells, which, at least in cell lines,
correlates with both ER expression and the stage of progres-
sion. One of the most important outcomes of this study is that
it describes an underlying reason for why primary breast tu-
mors with functional ERs may be marginally or not at all E2
dependent. With respect to both Bcl-3 expression and NF-kB
activity, like LCC1 cells and MDA-MB-231 cells, tumors that
display elevated Bcl-3 could be either ER* or ER™. Another
variable that could affect these parameters in tumors that are
either truly E2 dependent or just E2 responsive is the level of
circulating E2 in a patient at the time of biopsy. Based on our
results, Bcl-3 and NF-xB activity would not be predicted to
correlate simply with ER status in the absence of any other
information about the tumor or patient. Instead, ER expres-
sion combined with Bcl-3 and differential NF-kB activity might
predict the actual hormone-dependent status of the tumor and
prove to be a useful marker for progression.

The targets of NF-kB are numerous and varied, ranging
from cytokines in the immune system to cell adhesion mole-
cules, transcription factors, a variety of enzymes, and certain
survival proteins (42). The last group includes the antiapo-
ptotic protein Bcl-xL as well as Bcl-2, whose expression has
been shown to be activated by NF-«B in neuronal cells (10, 51).
We have previously demonstrated that Bcl-2 is positively reg-
ulated by E2 in MCF-7 cells (52), although this regulation
appears to be absent in LCC1 cells and basal levels of Bcl-2 are
lower than in related MCF-7 cells. We have also shown that
Bcl-2 expression is sufficient to prevent E2 withdrawal regres-
sion of MCF-7 tumors in nude mice (44). Thus, a further
decrease in expression of Bel-2 in LCC1(IkBaSR) cells would
likely contribute to the acquired E2 sensitivity of LCC1
(IxBaS®) tumors by facilitating the apoptotic response follow-
ing the death signal constituted by E2 release pellet removal.
The fact that Bcl-2 but not Bcl-x was reduced by IkBoS®
expression suggests that p65/p50 complexes may positively reg-
ulate Bcl-2 expression while Bcl-x is regulated either by differ-
ent NF-xB complexes or by other means in these cells. The
IAP protein hIAP1 (18) has been shown to be induced by
NF-kB (reference 42 and references therein), and while our
preliminary findings indicate higher levels of both hIAP1 and
hIAP2 in those breast cancer cells containing elevated consti-
tutive NF-«B activity (data not shown), the role of these pro-
teins in hormone independence requires further investigation.

The work presented here demonstrates that NF-xB com-
plexes play distinct roles in E2-dependent and -independent
growth and survival of breast cancer cells. Complexes of p50
(and possibly p52) and Bcl-3 in LCC1 cells promote the growth
of LCC1 cells in an E2-dependent manner and, although this
was not directly tested here, likely contribute to growth pro-
motion in the presence of an appropriate survival signal in
E2-independent cells as well. The majority of NF-xB DNA
binding activity is composed of p50 dimers; however, expres-
sion of Bcl-3, which is required for the transcriptional activity
of these complexes, is insufficient to confer E2 independence
to MCF-7 cells. Thus, p65-containing complexes in LCC1 cells,
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FIG. 9. Proposed mode! of induction of NF-kB-mediated estrogen-
independent growth and survival following estrogen withdrawal from
ER™ breast cancer cells. E2 provides growth and survival signals to
ER™ breast cancer cells. E2 withdrawal induces NF-kB activity which
in most cells is not sufficient to support E2-independent growth, and
the tumor regresses. However, some cells could persist as E2-indepen-
dent variants as a result of adequate expression of differential NF-xB
activity. ER™ breast cancer cells have constitutive p65 and p50 activity.
See text for details.

either alone or in concert with p5S0 dimer/Bcl-3 complexes,
clearly have a critical role in conferring the E2-independent
phenotype. Supporting this hypothesis is the observation that
expression of IkBaS® protein clearly reduced nuclear p65 lev-
els in LCC1 tumors but had little effect on p50 or p52. More-
over p65 complexes were virtually undetectable by supershift
analysis in LCC1(IkBaS®) cells. The crystal structure of the
IkBa:NF-kB complex has been resolved, revealing a stable and
extensive interaction between IkBa and p65. The outcome of
this interaction is a critical change in the conformation of p65,
resulting in allosteric inhibition of DNA binding as well as
masking of the nuclear localization signal in p65 (26). Al-
though IkBa can bind p50 homodimers, it does so with a
60-fold-lower affinity than in its interaction with p65/p50 (30).
Thus, the data presented here, as well as the fact that all ER™
or E2-independent cell lines have high levels of p65/p50 NF-xB
activity, support the hypothesis that breast cancer cell progres-
sion requires increased p65/pS0 activity.

Our results together with those in the literature suggest the
model in Fig. 9, which indicates pathways of growth and sur-
vival in ER™ breast cancer cells in both the presence and
absence of E2. E2 provides dual growth and survival signals at
least in part by increasing cyclin D1 and Bcl-2 protein levels.
We surmise that the increase in Bcl-3 after E2 withdrawal
could also contribute to increased proliferative rates, based on
the increased rate of tumor growth generated by Bcl-3-over-
expressing cells. This increased proliferation is insufficient,
however, to prevent the overall regression of the tumor over
time. Thus, our model suggests that while most E2-dependent
cells will undergo cell death after E2 withdrawal in vivo, a
subset with adequate levels of p50/p52/Bcl-3 and p50/p65 will
both grow and survive, thus establishing the E2-independent
phenotype. It is possible that these two events may not occur
simultaneously in tumor cells and that the immediate induction
of Bcl-3 after E2 withdrawal may be sufficient over the short
term to maintain the tumor while the proliferative rate exceeds
the rate of apoptosis. This could provide adequate time for
other signaling pathways, such as ErbB2, which is also induced

NF-xB IS REQUIRED FOR HORMONE INDEPENDENCE 6899

after E2 withdrawal in MCF-7 cells (data not shown), to induce
p50/p65-associated activity (6, 57). Studies to investigate the
possible role of ErbB receptors in this process are under way.
The ability of IkBa to inhibit E2-independent growth in this
study shows that NF-«kB activation may be the most critical
early event following E2 withdrawal resulting in breast cancer
progression. Therefore, in addition to representing a potential
therapeutic target in ER™ breast cancer as proposed by Biswas
et al. (7), NF-«kB inhibition may well prove to be effective in
obviating progression. Ironically, a reduction in circulating E2
levels (or spontaneous loss of ER expression) in individuals
with hormone-dependent breast cancer would directly precip-
itate the early induction of NF-«B activity, which could confer
E2-independent growth and survival to these cells.
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Abstract

Recent advances in machine learning and pattern recognition methods provide new analytical tools to explore high
dimensional gene expression microarray data. Our data mining software, VISual Data Analysis for cluster discovery
(VISDA), reveals many distinguishing patterns among gene expression pro.les, which are responsible for the cell’s
phenotypes. The model-supported exploration of high-dimensional data space is achieved through two complementary
schemes: dimensionality reduction by discriminatory data projection and cluster decomposition by soft data clustering.
Reducing dimensionality generates the visualization of the complete data set at the top level. This data set is then
partitioned into subclusters that can consequently be visualized at lower levels and if necessary partitioned again. In
this paper, three direrent algorithms are evaluated in their abilities to reduce dimensionality and to visualize data sets:
Principal Component Analysis (PCA), Discriminatory Component Analysis (DCA), and Projection Pursuit Method
(PPM). The partitioning into subclusters uses the Expectation-Maximization (EM) algorithm and the hierarchical
normal mixture model that is selected by the user and veri..ed "optimally” by the minimum description length criterion.
These approaches produce dixerent visualizations that are compared against known phenotypes from the microarray
experiments. Overall, these algorithms and user-selected models explore the high dimensional data where standard

analyses may not be su Ccient.
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l. Introduction

With gene expression microarrays, the relative expression levels in two or more mRNA populations
derived from tissue samples can be assayed for thousands of known sequenced genes simultaneously
[1], [2]. Thus, this assay makes them an eCcient and cost-erective tool for large scale analysis of gene
expression in recent years. Their design is composed of a platform (glass slide, nylon ..Iter, or chip) with
bounded cDNA fragments or oligonuclectides that code for either known gene sequences or Expressed
Sequence Tags (ESTs). Microarrays have been used to classify clinical samples, to investigate the
mechanism of drug action, to examine the etiects of drugs on gene expression in yeasts, and to identify
and validate novel therapeutics for cancer patients [1}[3][4]. Still hidden links remain between genes
and the biology of cancer. They, however, may be rewvealed through a large scale of gene expression
analysis of normal and cancer éells. Speci..cally, an altered gene expression pattern in the malignant
tissues can determine their phenotypes, e.g., drug responses, growth proliferation rate, angiogenesis,
and metastases. Microarrays allow mass measurements of gene expression to occur, but the tools
to analyze the data are not well dewveloped [5]. Because the number of dimensions in a microarray
data set could reach from hundreds to tens of thousands, the development of these analytical tools is
crucial. |

Advances in microarray technologies have enabled investigators to explore the dynamics of tran-
scription on a molecular scale. The current challenge is to extract useful and reliable information out
of these large data sets. A common and ..rst approach is cluster analysis. The primary objective of
cluster analysis is to group genes that have comparable patterns of variation. This approach is valu-

able for reducing the complexity of large data sets and for identifying predominant patterns within
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the data. However, additional methods are needed to extract information about individual genes from
these large data sets.

The gene expression pro..le (MRNA), one of the molecular signatures (DNA, mRNA, and protein),
is a snapshot of the malignant and proliferative mechanism behind cancer. The representation of each
sample’s pro..le is described as a point in a d-dimensional gene expression space in which each axis
represents the expression level of one gene. The presence of well-separated sample groups implies that
the representations of samples within the same group are close to each other in this gene expression
space but distant from those of other samples. Thus, the representations of phenotype-related samples
form clusters.

The research plan is divided into three major steps: cluster discovery, gene selection, and phenotype
prediction. Cluster discovery detects previously unrecognized tumor subtypes [5]. Gene selection
identi..es the most relevant gene subset involving the biological process that generates the patterns.
Phenotype prediction assigns unknown tumor sample to known tumor classes [5]. The main challenge,
however, is that the microarray data is high-dimensional, multi-modal, and lacking in prior knowledge.

Data clustering is a process of grouping input data points with similar features in the multidimen-
sional space; the algorithms are being investigated for long time. The most common hierarchical
clustering method often used by biologists for data clustering is dendrogram [6]. At the end of the
analysis the data points are arranged into a phylogenetic tree, the level of similarity of two pairs is
represented by the length of the branch. However, even though the hierarchical clustering is simple
and straight forward, it is designed to refect true hierarchical tree structure and that is not the way in
which microarray data is generated. It is very important to include more biological information rather
than rigidly clustering data points. Hierarchical clustering may fail to group data points in the right
way because it is greatly infuenced by local condition and has no opportunity of evaluating the global
structure. Support Vector Machines (SOM) attempts to search for relevant patterns by ..rst imposing

structure on the data with nodes that are expected to eventually mowve to the center of each cluster,
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and‘ then updating the structure map in each iteration based on a data point randomly selected from
the data set [7]. The result ends up gathering similar samples in the same cluster. Studies of using
SOM to cluster genes have been done by Whitehead Institute/MIT [7]. Under unsupervised situation,
the success of this approach partially depends on the initialization of the map structure, e.g. number
of nodes and dixerent geometries. Without data modelling, SOM lacks criteria for validation of cluster
structure, e.g. whether the number of clusters is optimal.

A gene clustering method based on graph theoretic techniques is developed for the situation that
the clusters are not assumed to be hierarchically structured [8]. The cluster information is mapped to
an undirected graph where each clique in the graph indicates a cluster. It is assumed in the model that
the input data contain underlying cluster structure contaminated by random errors. Through applying
this clustering algorithm, with high probability, the cluster structure can be recovered by removing
the random errors from the input data. However, the algorithm is developed for gene clustering, in
which the input data have much lower dimensionality than the microarray data we have (about 20 vs.
500 » 8000), its capability of handling high dimensional data is uncertain. In addition, the microarray
data hawe signi..cantly large overlaps among clusters resulting from the nature of biological data. The
potential application of this algorithm to microarray data is not optimistic since it may not be able to
erectively cluster data points with overlaps.

An interesting clustering approach using support vector concept is presented in [9], where data points
are mapped to a high dimensional feature space and support vectors are used to de..ne a sphere to
enclose them. Data points are clustered hierarchically by adjusting parameters in the kerne! function
that mathematically represents the mapping from input space to feature space; the outliers are allowed
by setting appropriate penalty parameter. The method has advantages: ..nd clusters with arbitrary
shapes, no need for dimensionality reduction and capability of dealing with outliers. However, the
clusters with sizable overlaps cannot be correctly found by using this method, therefore it is not very

suitable for microarray data clustering.
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.We propose a model-based approach hierarchical data exploration method that may greatly overcome
the limitations of other methods. For instance, our method can evaluate the overall cluster structure
while hierarchical clustering method and SOM can only do clustering blindly by starting without
any idea about the large scope structure. The hierarchical visualization scheme help discover any
hierarchical tree structure if existing, but it is still valid if such structure do not exist since the
method is also designed for visualizing the inner structure of any cluster. The initialization of the
clustering is also supported by user interaction and veri..ed by model selection criterion to ..nd the
best structure description. The soft data decomposition allows the overlaps among clusters are well
respected and modeled. The model selection procedure provide a theoretical and quantitative tool for
cluster validation.

In this paper, we will report the progress in cluster discovery with our newly developed discrimina-
tory data mining methods [16][17]. The presentation will entail three major components: (1) statistical
modeling of gene expression microarray data with a standard ..nite normal mixture (SFNM) distribu-
tion; (2) development of a joint supervised and unsupervised data mining scheme to “discover” sample
clusters in a discriminative visual pyramid; and (3) evaluation of the data clusters produced by such
scheme with phenotype-known microarray experiments. Major diferences are found between our work
and the previous most related research [18], [26], [22], [23], [24][25]. First, since the high comptlexity
of the data structure within a high dimensional space cannot be adequately explored by a single-level
visualization [18], we dewveloped a hierarchical visualization paradigm, inwlving mixture statistical
sub-models and visualization subspaces. The resulting data mining tool is capable of capturing cluste;”
distribution structure in high dimensional space and discover the relationships among clusters. Second,
we proposed three algorithms: 1) Discriminatory Component Analysis (DCA), 2) combined Projec-
tion Pursuit Method (PPM) / Independent Component Analysis (ICA) - ICA/PPM, and 3) combined
PPM / Principal Component Analysis (PCA) - PCA/PPM. All three probabilistically project the

softly partitioned data set onto multiple visual subspaces. They allow an exective separation of local
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clus:cers in dimensionally reduced visual subspaces, which may represent the original data set well.
Third, we implemented a probabilistic adaptive principal components extraction (PAPEX) algorithm
to estimate the top two principal axes and an incremental expectation-maximization (IEM) procedure
to estimate SFNM distribution. The computation is eCcient when confronted with high dimensional
data sets [14]. Finally, we imposed a model selection procedure to determine the number of sub-clusters
within each cluster using the Minimum Description Length (MDL) criterion. In addition, applying

the MDL criterion also determines whether a further split or partition of a subspace should continue

in completing the whole hierarchy [16], [24].

Il. Theory
A. Hierarchical Visual Data Exploration Scheme

The purpose of cluster analysis is to determine whether there are certain number of well-de..ned
data sets within the entire data distribution and/or derive most rational and optimal grouping scheme
to partition data into a speci..ed number of clusters.

Since a gene expression microarray data set is a mixture of samples of cancer and non-cancer, or
a mixture of samples of various types of cancers, the SFNM model may be the best approach for
describing such multi-modal data structure [12]. In the case that k clusters exist in the data set, a
mixture model with & normal distributions can be used to describe the overall distribution of the data.
We will also estimate the density parameters of each cluster and the overall mixture.

Assume the sample points ft;g in gene expression space form Kj clusters f(11,Ct1), ..., (" 4,Ctx); s
(" ¢k, Crro)a, where 7, and C,y are the mean vector and covariance matrix of cluster k respectively.
Using the SFNM to model the multi-modal distribution is considerably successful recently [12]. Such

a data distribution takes a sum of the following general form

3
p(t) =  mkgti? &, Cu) (1)
k=1

: o : : P
where 7 is the corresponding mixing proportion, with 0 - 7, - Tand 7, =1, and g is the




JOURNAL OF SIGNAL PROCESSING SYSTEMS: WANG, ZHANG, LU, LEE, KUNG, CLARKE 7
G.al:lssian kernel. The modeling of SFNM on the microarray data addresses a combination of the
detection of structural parameter Ko (e.g., cluster discovery) and the estimation of regional parameters
(mk, 7 ,Cuw ) based on the observations t. One natural criterion used for this modeling is the Maximum
Likelihood (ML) estimation using the Expectation-Maximization (EM) algorithm [12].

The super high dimensionality (500 v 8000) of microarray data introduce diCculties in the revelation
of data structure, which have been well studied in [16]. Cover's theorem on the separability of patterns
tells us that one single projection on a dimension reduced space is not suCcient for revelation of the
true data structure. Hierarchical visual exploration paradigm, inwolving hierarchical statistical models
and visualization spaces/subspaces, may provide more opportunities for the user to understand the
data distribution structure, and are essential for high dimensional microarray data study. We believe
that the consideration of introducing user interaction into the clustering algorithm is a more practical
approach, which greatly reduces both computational complexity and local optimum likelihood [16]{11].
A user-friendly graphical interface for data visualization purpose is developed to allow the user to select
initial centers of the data clusters. To visualize data, we further developed data projection methods
based on the current methods used in [16] in order to maximize the rewelation of cluster structure.
The details about the various visualization techniques will be introduced in the next sub-section.

In this approach, the techniques involved are: statistical modeling of microarray data with SFNM
distribution, discriminative data projections jointly presented by supervised and unsupervised learn-
ing processes, soft cluster decomposition based on an incremental expectation-maximization (IEM)
procedure, and evaluation of the data clusters with phenotype-known microarray experiments.

The hierarchical version of the SFNM model can be extended to include more levels based on the
same principle as above. The more hierarchical levels the tree has, the more sub-models are used,
and the ..ner the sub-models are. The formation of the hierarchical visualization tree is guided and
veri..ed by model selection over x-subspaces. Model selection refers to the detection of the structural

parameter K (the number of clusters or sub-clusters). In addition to the user’s visual inspection, we
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propose to use an information theoretic criterion, i.e., the Minimum Description Length (MDL) [27].

The MDL calculation is a model ..tting procedure, in which an optimal model is selected such that

the selected model best ..ts the observed data. Thus, the value of K is selected by minimizing

MDL(K,) =  log(Lm.) +0.5K, 1og N (2)

where K, is the number of free adjustable parameters, and Ly, is the joint maximum likelihood, of

the model.

B. Discriminatory Data Projection

The purpose of developing discriminatory data projection tools is to maximally discover hidden
cluster structure in the data space. The consideration of using multiple data projection tools is
primarily based on the fact that the performance of the individual projection scheme tends to be case-
dependent due to limited number of data samples in nearly all existing microarray data. T herefore,
it is insuCcient to use only one projection tool, which may increase risk of losing chances to discover
cluster structure. The four discriminatory projection tools presented in this paper are: PCA, DCA,

PCA/PPM, and ICA/PPM. The details of each method are discussed in the following sub-sections.

B.1 PCA

PCA is an exective unsupervised method for achieving dimensionality reduction [22], [14], [10]. For a
set of observed d-dimensional data vectors ft;g, 7 2 f1, ..., Ng, the ¢ principal axes w,,, m 2 f1,...,q( -
d)g, are those orthogonal axes onto which the retained variances under projection are maximal. It
can be shown that the principal axes w,, are given by the ¢ dominant eigenvectors (i.e., ¢ maximal

eigenvalues) of the sample covariance matrix

X
CF%_ CERRICERPE Q)
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such that

CiWnm = AmWn (4)

where 1, is the sample mean and ), is the eigenvalue. The vector x; =WT(t; | ',), where
W= (wq,wy, ...,Wq), is thus a ¢ dimensional new representation of the observed vector t;. Two is-
sues contribute to the limitations of the conventional PCA: its global linearity without incorporating

data structure; and its optimality based on reconstruction error rather than pattern separability.

B.2 DCA

If class information is known, the search of directions in data space for discovering cluster structure
is under better guidance. There are two types of class information we may be able to obtain: known
phenotypes from biological experimental setting, and sub-cluster information resulting from cluster
decomposition based on an unsupervised projection (PCA or PPM). For the top level projection, DCA
is a supervised process by using the known phenotype(class) information in the search of projection.
However, DCA can also be used in an unsupervised situation that is on the sub-lewvels by using the
second type of class information discussed above. Demonstrations of dixerent applications of DCA are
shown in the Result Section.

When confronting a multi-modal data set, howewer, is to emphasize the inter-cluster separation
by replacing the total covariance matrix with the Fisher's scatter matrix [26], [10], i.e., to ..nd the
eigenvectors of S!S

S;JSme = )\me (5)

where the within-cluster scatter matrix (Sy) is the joint scatter of data point t; around the conditional

mean vector 1,, of Kp classes (on the top level) or sub-clusters (on the sub-levels)

¢
SW = Tk Ctk (6)
k=1
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.

with cluster conditioned covariance matrix

Py .
T 1
Cy = i=1zlk(t;I:JN wd (i i M) ™
i=12ik
where
g (L * s Cok)
ik = , 8
‘ p(t) ®)

and the between-cluster scatter matrix (S,) is the scatter of the cluster conditional mean vector 1,

around the owerall data center 1,

%0
S, = (M i "M i 1t)T ©)

k=1

such that the separability of patterns is maximized, that is
W = arg n\"ll\?xfTTace(WgS\'J S, Wy)g. (10)
0

This is termed as Discriminatory Component Analysis.

The original vectors ft;g are linearly transformed by W, a d £ 2 matrix, through x=WT(t ,)
into a two-dimensional projection space x= (z1, ;). For a normal distribution g(tj?,,,Cy) over the
data space, a similar dimensionally reduced probability distribution g(xj",,,C) of the new variable

X in the projection space is simply de..ned by the Radon transform of g(tj7 . ,Cw)
z

96", Cx) = alti" 4, Cuddx(x WTt+WT1t)dt (am
where §(.) is the delta function that §(0) = 1 and §(= 0) = 0. According to the linear superposition

property of Radon transform and the projection invariant property of normal distribution, we have

x
f(X) = 71-k:g()g 1 xk 3 CXk) (1 2)
k=1

as the counterpart of Eq. (1) in x-space de..ned by projection matrix W.

However, when the data set is projected onto a single lower dimensional subspace, its inherent multi-

modal nature may be partially or completely obscured according to Cover’s theorem on the separability
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of patterns [14]. In other words, even though the cluster structure of a data set may be evident from
the higher dimensional space, it is quite conceivable to have the ..ner cluster patterns concealed after
a single linear projection, leading to an unidenti..able correspondence between Eq. (1) and Eq. (12)
[16]. A nowvel approach is to model high-dimensional multi-modal data set with a hierarchical mixture
model and accordingly with a collection of probabilistic principal discriminatory subspaces [16], [22],
[23], [24], namely the exploratory cluster discovery.

Assume a top-level model consisting of a single Radon transform W and a mixture of K;(<
Kp) normal distributions p(t) = pkK=11 kg (tj Vo ,Cik ) which is identi..able in x-space, i.e., f(x) =

f=‘1 Teg(Xi 1 .,Cxx), We can form a two-level hierarchy by associating a group of SFNM sub-models

with each model k£ at top-level
5 X
p(t) = Ya, %_j_jkg (TJ 1 tk,j)? Ct(k,j)) (1 3)

k=1 i=1

where 7, again corresponds to a set of mixing proportions, one for each k, with 0 - 73 - 1
and ,m = 1, and pkK=11 K, = Kp. To reveal the hidden cluster pattern within each model
k at top-level, ie., g(tj1,,Cu) = p;{j’{“ T4k (6 " ¢y Crty))s @n associated probabilistic principal
discriminative subspace is constructed that focuses on the separability of patterns within the data
portion de..ned by model k, where the opaque degree of a data point in the subspace plot is proportional
to its posterior probability belonging to this model, i.e., z;; determined at top-level.

The further cluster di'scovery is a two-stage procedure: a soft partitioning of each model k into K3
sub-clusters followed by a construction of corresponding subspace. Instead of assigning each given data

point exclusively to one subspace, the contribution to its generation is shared among all the subspaces.

The subspaces for the sub-models at second-level are generated by the probabilistic DCA such that

S;:,w Sk,b Wim = )‘k,m Wim (1 4)

Pk,

where S, = ;2

¥ T;kCe(k,) With subcluster conditioned covariance matrix

P
N . . N
Ct(kJ) = i=1 zi(k,j)(ti | 1 t(kJ))(ti 1 1t(kJ))T/ i=1 Zilkyj)r
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v

“Zi(kg) = ZikTik9 (i T et)Crd))/9(td Ve, Cuk),

and Sip = pfj'{“ Tik(Teqyy i Te)(Teayy | Te) T The probability distribution of model k in x-
space at second-level is now de..ned by the model k focused Radon transform of g(tj1,,,Cw). i.e.,
9047 ,Ci) = R gt ", Ca)d(x | Wit+W] 1, )dt. It should be noted that each component in
Eq. (13) now corresponds to an independent sub-model with projection matrix Wy. To interpret the
corresponding set of visualization subspaces, all data points X; =Wg(ti i ') will appear in every

plot of the K7 subspaces at the second-level, with their opaque degree proportional to z;.

B.3 PCA/PPM

In the exort of searching projections for cluster separability, we take an alternative unsupervised
approach, Projection Pursuit Method (PPM) that is to search “interesting” projections. Even though it
is not universally agreed on what constitutes an “interesting” projection in PPM research community,
the de..nition of “interesting” projection by some leading researchers does meet our needs in this
particular project, which is a projection where the data separate into distinct and meaningful clusters
[20]. We have two particular goals of using PPM in this project: (1) ..nd low dimensional (equal or less
than three) projections that provide the most revealing view of the overall data distribution; (2) use
PPM for dimensionality reduction so that we will focus directly on the discriminatory projections rather
than indirectly searching through covariance. The advantage of PPM is that it ..nds the directions that
are not arected by the linear scale and correlational structure of the data, which is the disadvantage
of PCA.

As mentioned before if we want to put human ability for pattern discovery to good use of four or
higher dimensional data, we shall ..rst look at the projections onto the spaces spanned by two or three
of the dimensions. In most cases, any arbitrary direction could be the right one for cluster structure
discovery. It implies that we have to search the space in all possible directions, thus the problem gets

even worse due to exhaustive searching. In our approach, we tried to simplify the PPM by using non-
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Gaussianity as a criterion, and using PCA and Independent Component Analysis (ICA) as vehicles
for ..nding discriminatory projections.

The direction with Gaussian or super-Gaussian distribution is the one consisting least data struc-
tural information; on the other hand, the least Gaussian distribution indicates plentiful structural
information. |f the data distribute as one Gaussian or super-Gaussian distribution (a “spiky” proba-
bility density function (pdf) with long and heavy tails) in a direction, it implies that the déta points
are most likely forming a one-cluster structure instead of multi-modal structure that is the important
for cluster separation. On the contrary, the data may construct two or more clusters in the directions
where distributions are non-Gaussian, e,g. sub-Gaussian (a "fat” pdf and more like a uniform distri-
bution). We used one of the non-Gaussianity measures kurtosis, de..ned as fy'g | 3(E fyzg)z, where
y denotes the random variable. Kurtosis can be either positive or negative. A random variable with a
positive kurtosis is considered as a super-Gaussian, and that with a negative kurtosis is considered as
a sub-Gaussian [21][15].

We try to fully utilize our PCA resuits to test PPM in order to reduce computational load. A
prototype computer algorithm, termed as PCA/PPM, is implemented to calculate kurtosis of each
principal component resulting from PCA and rank them so that the optimal directions are found to

be those that show the strongest sub-Gaussian.

B.4 ICA/PPM

Independent component analysis (ICA) is a recently developed method for ..nding linear representa-
tions of non-Gaussian data such that the components are statistically independent, or as independent
as possible. Since PPM is designed to search the directions with the least Gaussian distribution and the
least Gaussian distribution is the criterion to estimate ICA model, ICA and PPM are closely related.
The non-Gaussianity measures can be adopted as projection pursuit functional indices. |ICA/PPM

algorithm that is PPM assisted with ICA, is then implemented to directly search for directions with
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nen-Gaussian distribution in data space [10] [21]. Similar to PCA/PPM, kurtosis is calculated on each
independent component resulting from ICA, and two components with the most negative kurtosis are

chosen for 2-D projection.

Il. Algorithm

We now present the description of our algorithms that progressively proceeds by ..tting a series of
sub-models to the clusters of the data set interactively and incrementally.

The algorithm begins by determining W for the top-level projection (a two-dimensional x-space).
The initial estimate of W is obtained from our previously developed APEX neural computation (e.g.,
Eq. (4)) [14], and further modi..ed by DCA-APEX algorithm (e.g., Eq. (5) with or without S;})
[16] where the prerequisite is to estimate the SFNM model at top-level (e.g., Eq. (1)). To remedy
the problem of high dimensionality with microarray data, neural computation of (W %, 1,Cuw) is
eCcient, in which only the top two eigenvectors of the covariance or scatter matrix are calculated, and
model parameter values are ..rst estimated in x-space and then ..ne tuned in t-space incrementally.
For example, the Incremental EM (IEM) procedure provides “soft” splits of the data points, hence

allowing the data to contribute simultaneously to multiple clusters, which results in

E-Step
Dg(xicu %, CH)
Z(i+Nk = g 1 () 1(':) i)y’ (15)
f( |+1JA xk’C )
M-Step
140 = 10w a6t 1 Dz 16)
CLV = CO +blbaar i "W i DT i CRlz e (7)
% 2 1
7r,((+1) +1 () z+ 1Z(i+1)k (18)

for k = 1,..., K1, where a(z) and b(i) are introduced as the learning rates, two sequences converging to

zero, ensuring unbiased estimates after convergence. The user will pin-point the initial cluster centers
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1‘52() and assign w,(co) =1/K,; and C)(?k) =WTC,W. The optimum value of K; is determined based on
MDL (e.g., Eq. (2)) where K, =6K1 1.

Determination of the subspaces W}, and sub-models (7j5k, T 1) ,Crik,)) at the second-level can again
be viewed as a two-step estimation problem, in which further splitting of the sub-models is determined
within each of the clusters identi..ed at the top-level such that its internal structures can be further
explored over cluster-focused x-space. T he initial estimate of W), can be obtained using a probabilistic
APEX (PAPEX) algorithm.

‘ The corresponding Pfji" Tiikg(6 1 ¢ j)Crik,)) can again be estimated using |[EM algorithm to al-
low a SFNM distribution with K3 ; sub-models to be ..tted to cluster k, where the user will pin-point

the initial subcluster centers 1 ((? y and assign Wg),z = 1/K,) and Cf(O(LJ) =W] Cy W, to initialize

x(t,j
p;-{:i’“ T k908 7 ey Cxixg)) With a model selection procedure. By replacing zj(t; | ') in PA-
PEX formulation with (" ¢wj) i ") Wk is updated by a DCA-PAPEX procedure to generate a
separability-based and cluster-focused subspace for model k£ at the second-level.

The construction of the entire hierarchical tree is completed when no further data splitting is rec-
ommended in all of the parent subspaces, followed by the generation of the bottom-level subspaces
(for example, the third-level). The value of W(; ; is obtained using the PAPE X algorithm with z; ;)

instead of z;;, and all data points X;( ;) =Wz’j(ti i t(,(,J-)) will appear in every plot of the total K

subspaces at the bottom-level, with their opaque degree equal or proportional to z;x ;).

IVV. Results

A demonstration of the capability of ..nding cluster structure by PCA/PPM, DCA, and PPM is
..rst done on a simulated data set that consists of three dimensions and four clusters (N=100 for
each cluster). The results are illustrated in Figure 1, where we can see that the maximal information
about the cluster structure is revealed by using DCA, PCA/PPM, and ICA/PPM comparing to the

conventional PCA. The four cluster structure is clearly shown in (b), (c), and (d) in Figure 1, but only
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three clusters are seen in the PCA plot (a) without incorporating color information in all plots. We
shall make it clear that PCA, PCA/PPM and ICA/PPM are all completely unsupervised processes
without replying on the known class information, except DCA that is supervised in the case. The class
information is used only to show the four distinct classes with four di®erent colors and symbols.

The model selection of simulated data at the top lewel projection generated by DCA is performed,
and the results showed that a four-cluster structure may best describe the data distribution on this
level. In the Figure 2, ..ve direrent model selection patterns are tested and MDL curve is plotted, and
the MDL suggests that the four-cluster structure is best.

A hierarchical visualization trees, as shown in Figure 3(a), is generated on the simulated data set.
The top ..gure is a top level projection of the complete data set, where we can only see three clusters,
the middle ..gure is a second level projection that provides individual diderent views of the three sub-
clusters selected in the top level projection. In the second level, we can see two hidden clusters in
sub-cluster #1, this gives the user opportunities to discover more information about data structure,
and it makes further partitioning possible. Clusters are partitioned and shown in their own windows
in the bottom ..gure. In this experiment, only conventional PCA is used to generate all projections.

To illustrate a joint way of the discovery data structure by combining PCA, DCA, PCA/PPM
and ICA/PPM, we also tested PCA/PPM, DCA, and ICA/PPM in the generation of hierarchical
visualization tree. In this case, since conventional PCA is unable to locate the directions in the -
space where real cluster structure can be displayed, we can use PCA/PPM, DCA, and ICA/PPM as
alternatives. When DCA is used to plot the top level projection in Figure 3(b), more information
about the cluster structure is revealed after the ..rst step, i.e., the directions to show the four-cluster
structure are found in the space by DCA. For the simulated data set, the hierarchical visualization by
DCA is used as an illustration because DCA, PCA/PPM and ICA/PPM are similar to one another.
The two hierarchical trees in Figure 3 are produced independently. The consistency of the clustering

results and the known class grouping can be seen from the color of the data points in each individual
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window on the bottom lewvel. The fact that the data points within one cluster have the same color
implies that the data points belonging to the same phenotype group are grouped into one cluster.

Besides testing the methodology on the simulated data, we also evaluate th;a real microarray data sets
from National Cancer Institute (NCI) and Massachusetts Institute of Technology (MIT). In the 2308
dimensional (genes) microarray data sets of round blue cell tumors from NCI, there are four classes:
neuroblastoma (NB; N=12), rhabdomyosarcoma (RMS; N=21), non-Hodgkin lymphoma (NHL; N=8)
and the Ewing family of tumors (EWS; N=23). Figure 4 illustrates how all projection methods (PCA,
PCA/PPM, DCA, and ICA/PPM) on NCI data explore cluster structure. According to our experience,
these four methods may have some extent on ..nding direction for discovering cluster structure in
various cases. T hus, using all applications to examine the data structure are more informative than one
or two methods combined. As discussed abowe, in this experiment, the known phenotype information
has been only used for color ..gure plotting in PCA, PCA/PPM and ICA/PPM experiments rather
than in projection searching, except for DCA experiment that is supervised.

PCA and PCA/PPM on the NCI data generate hierarchical visualization trees (Figure 5). Using
PCA to generate 2-D projections produces the left hierarchical tree Figure 5(a), and applying the
PCA/PPM generates the right tree Figure 5(b). MDL curves are also plotted for the two diterent
top level projections. The curves indicate that the three-cluster from PCA and the four-cluster
structures from PCA/PPM are best in describing the data distribution at the top level projections.
The number of clusters determined by MDL agrees with the user visual inspection. As discussed in
the hierarchical exploration experiment on the simulated data, the consistency of the clustering and
the known biological phenotypes de..ned above is shown by the uni..ed color of data points within
each cluster. The clustering scheme recommended by MDL measure also indicates the consistency
of the biological phenotype information and the ..nal clustering in the bottom level of Figure 5. In
Figure 5 (a), although MDL cannot catch the four-cluster structure on the top level, the projections

on the second level do provide good opportunity for discovering two clusters within the sub-cluster
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#1 (mixed green and yellow) on the top level. This also demonstrates the advantages of hierarchical
visual exploration scheme on the cluster discovery. MDL recommends a four cluster structure on the
top level of Figure 5(b), the well partitioned four clusters on the bottom level show the ability of MDL
to the ..nding the true cluster structure.

In studying leukemia, MIT published a 7129 dimensional microarray data sets that contain two
classes, acute lymphoblastic leukemia (ALL; N=47) and acute myeloid leukemia (AML; N=25). The
2-D projections of the MIT data are presented in Figure 6 . All four projections on the leukemia data
sets explore the data structure similarly to the other cases (simulated and NCI data sets).

DCA is meaningful with the model selection and the cluster partitioning even under unsupervised
condition, i.e. no class information is known. \We demonstrate this idea by combining PCA and
DCA dynamically at the top level projection. In Figure 7, the top level projection in the top ..gure
is generated by PCA (unsupervised analysis) without knowing any class information. After model
selection and partitioning (provide class information), DCA (supervised analysis) can now produce
the re-projection of the data (middle ..gure). The bottom ..gure is a partition of the re-projected
data. Even though the PCA projection (top ..gure) can be directly partitioned into sub-clusters
(bottom ..gure), the additional step using DCA (middle ..gure) provides another chance to visualize
the complete data set from diderent angles in which cluster structure is emphasized. As in this example,
this data projection scenario is especially useful when cluster structure is ambiguous to the user in
one projection, but becomes clear after DCA is applied based on the user model selection and cluster
partitioning. From the clustering results shown on the bottom level of Figure 7, we can conclude that
the clustering is fairly consistent with the biological phenotype information since only a few mixed

groupings occur.
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. V. Discussion

The revelation of growing volume of high dimensional and multi-modal data demands a data mining
tool dixering from conventional data visualization method, which is capable of dealing with high dimen-
sional data set. The hierarchical visualization paradigm involving hierarchical statistical models and
visualization space is proven to be able to edectively discover data structure and capture all interesting
aspects of the data. Using several complementary visualization subspaces makes this complicated task
feasible. The strategy of the hierarchical data exploration and mining tool used for cluster discovery
is that the top level model and projection should explain the whole structure of the data set, while
lower level models explain the local and internal structure between individual cluster, which may not
be obvious in the high level models. With several complementary mixture models and visualization
projections, each level will be relatively simple while the complete hierarchy maintains overall fexibil-
ity yet still conveys considerable cluster information. In this algorithm, dimensionality reduction and
cluster decomposition are two major components. The dimensionality reduction allows visualization of
high dimensional data and less computational demand. The cluster decomposition provides relatively
simple models by partitioning large and complicated mixture models into smali local structure, which
orers great ease of interpretation and many bene..ts of analytical and computational simpli..cation.

The techniques involved are statistical modeling of the high dimensional data with SFNM distribu-
tion, 2-D data projection jointly presented by unsupervised and supervised data mining scheme, and
evaluation of cluster structure produced by such scheme using microarray experiments with known
phenotypes. Dixerent from conventional PCA, the PCA/PPM, DCA and ICA/PPM project entire
data set and the softly partitioned sub-clusters onto multiple 2-D visual subspaces, which makes every
subcluster/subspace be discriminatively explored individually so that local cluster structure is evec-
tively revealed. Furthermore, the PAPEX and incremental expectation-maximization (IEM) procedure
are implemented to estimate SFNM distribution. With the model-based approach, a model selection

procedure to determine the number of sub-clusters within each cluster using the minimum description
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length criterion. This allows algorithm to automatically determine whether a further split of a subspace
should continue in completing the whole hierarchy [16]. User interaction with the algorithm is also an
important issue. The user-friendly graphical interface facilitates the data visualization purpose, which
allows the user to select initial centers of the data clusters. Our experience has convincingly indicated
a great reduction of both computational complexity and local optimum likelihood. Although the ..nal
SFNM model can be estimated, the pathways of achieving cluster decomposition may be multiple.
This user-driven nature of the current algorithm is also highly appropriate for the visualization con-
text. With such features in the data mining algorithm, our tools can explore data structure in great

extents with no standard data analyses may compare.
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Fig. 1. The 2-D projections of the simulation data resulting from conventional PCA, PCA/PPM, DCA, and ICA/PPM.

Fig. 2. The model selection and the MDL curve of the simulated data at the top level prajection.
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Antiestrogens include agents such as tamoxifen, toremi-
fene, raloxifene, and fulvestrant. Currently, tamoxifen is
the only drug approved for use in breast cancer
chemoprevention, and it remains the treatment of choice
for most women with hormone receptor positive, invasive
breast carcinoma. While antiestrogens have been available
since the early 1970s, we still do not fully understand their
mechanisms of action and resistance. Essentially, two
forms of antiestrogen resistance occur: de novo resistance
and acquired resistance. Absence of estrogen receptor
(ER) expression is the most common de novo resistance
mechanism, whereas a complete loss of ER expression is
not common in acquired resistance. Antiestrogen unre-
sponsiveness appears to be the major acquired resistance
phenotype, with a switch to an antiestrogen-stimulated
growth being a minor phenotype. Since antiestrogens
compete with estrogens for binding to ER, clinical
response to antiestrogens may be affected by exogenous
estrogenic exposures. Such exposures include estrogenic
hormone replacement therapies and dietary and environ-
mental exposures that directly or indirectly increase a
tumor’s estrogenic environment. Whether antiestrogen
resistance can be conferred by a switch from predomi-
nantly ER« to ERpJ expression remains unanswered, but
predicting response to antiestrogen therapy requires only
measurement of ERa expression. The role of altered
receptor coactivator or corepressor expression in anti-
estrogen resistance also is unclear, and understanding
their roles may be confounded by their ubiquitous
expression and functional redundancy. We have proposed
a gene network approach to exploring the mechanistic
aspects of antiestrogen resistance. Using transcriptome
and proteome analyses, we have begun to identify
candidate genes that comprise one component of a larger,
putative gene network. These candidate genes include
NF«B, interferon regulatory factor-1, nucleophosmin, and
the X-box binding protein-1. The network also may
involve signaling through ras and MAPK, implicating
crosstalk with growth factors and cytokines. Ultimately,

*Correspondence: R Clarke; E-mail: clarker@gcorgetown.edu

signaling affects the expression/function of the prolifera-
tion and/or apoptotic machineries.
Oncogene (2003) 22, 7316-7339. doi:10.1038/sj.onc.1206937
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Introduction

Antiestrogens primarily act by competing with estrogens
for binding to the estrogen receptor (ER) and are the
most widely administered endocrine agents for the
management of ER-expressing breast cancers. The first
antiestrogens were generated in the mid-1950s as fertility
agents and included ethamoxytriphetol (MER-25) and
clomiphene. The ability of these compounds to induce
responses in some breast cancer patients soon became
apparent (Kistner and Smith, 1960), but the compounds
induced significant toxicity (Herbst et al., 1964). In the
early 1970s, the first study in breast cancer patients was
published with a new antiestrogen tamoxifen (TAM, ICI
46474) (Cole et al., 1971). Over the next 17 years, the
total exposure to TAM reached 1.5 million patient years
(Litherland and Jackson, 1988) and other selective
estrogen receptor modulators (SERMs) are being
developed and studied. TAM is now the most frequently
prescribed antiestrogen, and compelling data have
demonstrated a significant overall survival benefit with
the administration of this agent in breast cancer patients
with endocrine responsive disease (EBCTCG, 1992,
1998).

When compared with cytotoxic chemotherapy, anti-
estrogens are well tolerated and are associated with
mostly minor toxicities (Love, 1989). Common side
effects associated with TAM therapy include vasomotor
symptoms, gastrointestinal disturbance, atrophic vagi-
nitis, and changes in sexual functioning (Day et al.,
1999). While the frequency and severity of hot flashes
and other toxicities can be particularly unpleasant for
some women, remarkably few discontinue TAM be-
cause of these side effects. Medical indications for the




prompt discontinuation of therapy include associated
venous thromboembolic disease and endometrial cancer
(typically invasive adenocarcinoma, although uterine
sarcomas have been reported). The incidence of these
events is very low, and screening methods for both deep
vein thrombosis and endometrial abnormalities exist.
However, these increased risks must be considered in the
light of the potential benefits—particularly in the case of
healthy women considering TAM in the setting of
chemoprevention as opposed to active treatment. The
development of both venous thromboembolic disease
and endometrial cancer is attributed to the estrogenic
effects of TAM and may be abrogated by the develop-
ment of more SERMs (e.g., raloxifene) or of pure ER
antagonists (e.g., ICI 182,780; fulvestrant) (Robertson,
2001).

Some antiestrogens produce beneficial effects beyond
their ability to inhibit existing breast cancers. The most
convincing evidence supports an association between
TAM treatment and a marked reduction in the risk of
developing a contralateral breast cancer (EBCTCG,
1992) and a significant reduction in the incidence and
severity of osteoporosis in postmenopausal women
(Freedman et al., 2001; Kinsinger et al., 2002). Several
early studies suggested a reduction in the risk of
cardiovascular disease with TAM therapy, but this is
not consistently reported (EBCTCG, 1998; Fisher e? al.,
1998). When observed, the cardiovascular benefit was
usually attributed to the estrogenic effects of TAM; both
estrogens and TAM produce apparently beneficial
changes in serum triglyceride and cholesterol concentra-
tions (Joensuu et al., 2000), perhaps through effects
mediated by apolipoprotein E (Liberopoulos et al.,
2002). However, these findings must be considered in the
light of recent large studies of estrogenic hormone
replacement therapy (HRT) that either failed to identify
an HRT-induced reduction in coronary heart disease
(Hulley et al., 1998; Grady et al., 2002; WHI, 2002) and
stroke (Viscoli et al., 2001, WHI, 2002), or demon-
strated an increase in the risk of these diseases.

An overview of antiestrogen resistance

Despite the relative safety and significant antineoplastic
and chemopreventive activities of antiestrogens, most
initially responsive breast tumors acquire resistance
(Clarke et al., 2001b). It is unlikely that any single
mechanism or single gene confers antiestrogen resis-
tance. Rather, several mechanisms likely exist that
encompass pharmacologic, immunological, and mole-
cular events. These mechanisms, none of which are fully
understood, likely vary within tumors. Intratumor
variability in antiestrogen responsiveness will reflect
the presence of multiple cell subpopulations (Clarke
et al., 1990a). Since breast cancers appear highly plastic
and adaptable to selective pressures, the intratumor
diversity in antiestrogen responsive subpopulations also
likely changes over time. Tumors appear capable of
dynamically remodeling their cell populations in re-
sponse to changes in host immunity or endocrinology,
or the administration of local or systemic therapies. This
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plasticity is probably both cellular (some existing
populations die out/back while other populations
become dominant) and molecular (new cell populations
emerge as individual cells/populations adapt their
phenotypes by modifying their transcriptomes/pro-
teomes).

Since the major pharmacologic and immunologic
mechanisms of antiestrogen resistance have been pre-
viously reviewed (Clarke et al., 2001b), we will focus on
the role of molecular signaling through ER-mediated
activities in antiestrogen responsiveness. Antiestrogen
resistance can be either de novo or acquired. The most
common and best defined mechanism of de novo
resistance is the absence of both ER and progesterone
receptor (PR) expressions. However, we fail to predict
response to antiestrogens in approximately 25% of
ER + /PR +, 66% of ER+ /PR—, and 55% of ER—/
PR + breast tumors (Honig, 1996). Many ER + and/or
PR + breast tumors are already resistant by the time of
diagnosis and the resistance mechanism in these tumors
is unknown.

Overall, a loss of antiestrogen responsiveness by
initially responsive tumors is likely to be the most
common acquired resistance phenotype. Most initially
antiestrogen responsive tumors retain levels of ER
expression at recurrence on antiestrogen therapy that
would still define them as being ER + (Encarnacion
et al, 1993; Kuukasjarvi et al., 1996; Bachleitner-
Hofmann et al, 2002). Most data are for TAM
treatment; ICI 182780, which causes degradation of
ER (Dauvois e? al., 1992), may have a greater potential
for producing ER— tumors (Kuukasjarvi et al., 1996).
From our in vitro studies, loss of ER is not required to
achieve resistance to either ICI 182,780 or TAM
(Briinner et al., 1993b, 1997). The loss of ER expression
upon recurrence despite adjuvant TAM therapy has
been reported in less than 25% of tumors (Kuukasjarvi
et al., 1996; Bachleitner-Hofmann et al., 2002). Overall,
a loss of ER expression does not seem to be the major
mechanism driving acquired antiestrogen resistance.

A different resistance phenotype has been described in
human breast cancer xenografts that exhibit a switch to
a TAM-stimulated phenotype. This mechanism of
clinical but not pharmacologic resistance may not be
the dominant antiestrogen resistance phenotype. If the
prevalence of acquired resistance phenotypes in ER +
tumors broadly reflects what is seen in de novo
resistance, then the dominant resistance phenotype is a
loss of antiestrogen responsiveness.

Whether the continued expression of ER is required
for antiestrogen-resistant tumor growth or survival is
not known. However, responses to aromatase inhibitors
after an initial response and then failure on TAM are
common (Buzdar and Howell, 2001) and strongly
suggest that some TAM-resistant tumors retain a degree
of estrogen responsiveness. Where durations of re-
sponses to second-line endocrine manipulations are
short, truly estrogen-independent cell populations are
either already present at the time of recurrence and/or
many cells in the tumor are able to adapt rapidly to
further changes in their endocrine environment. Very
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short response durations or disease stabilization may
reflect the withdrawal of a mitogenic stimulus that is not
required for the survival or basal proliferation of most
cells in the tumor.

Antiestrogens

TAM is a triphenylethylene and its triaryl structure has
been widely copied in the design of new compounds.
Several TAM derivatives are already available, includ-
ing toremifene (chloro-tamoxifen) and droloxifene (3-
hydroxytamoxifen). Not surprisingly, both drugs are
essentially equivalent to TAM in terms of their
antitumor activities and toxicities (Roos et al., 1983;
Pyrhonen et al., 1999), so neither is widely used in
clinical practice.

The characteristic of raloxifene that has attracted the
most interest is its apparent lack of estrogenic effects in
the uterus, resulting in great interest in this drug’s
potential role in breast cancer chemoprevention. Sub-
group analysis of the data from the Multiple Outcomes
of Raloxifene (MORE) trial revealed that administra-
tion of raloxifene was associated with a 75% reduction
in the incidence of invasive breast cancer without a
concurrent increase in the incidence of endometrial
cancers (Cummings et al., 1999). This finding has led to
the ongoing randomized study of TAM and raloxifene
(STAR) in breast cancer prevention. Raloxifene still acts
as an antiestrogen in the brain, increasing the incidence
of hot flashes (Davies et al., 1999). A high incidence of
severe hot flashes is problematic for a drug to be
administered for approximately 5 years to otherwise
apparently healthy women. Raloxifene was recently
approved by the Food and Drug Administration for the
treatment and prevention of osteoporosis in postmeno-
pausal women. While a benzothiophene, raloxifene
(keoxifene; LY 156,758) has a three-dimensional struc-
ture broadly similar to the triphenylethylenes.

ICI 182,780 (Faslodex; Fulvestrant) is among the
more promising new antiestrogens. Unlike TAM, ICI
182,780 is a steroidal ER inhibitor that is often
described as a ‘pure’ antagonist with no estrogenic
activity, This is in comparison to the triphenylethylene
and benzothiophene antiestrogens, which are nonster-
oidal, competitive ER inhibitors with partial agonist
activity. The pure antagonist is characterized by
antineoplastic activity in breast cancer and is devoid of
uterotropic effects. However, the lack of agonist activity
limits beneficial effects in bone. Whether ICI 182,780
also will increase hot flashes depends on whether it
reaches adequate concentrations in the brain. Unlike
TAM (Clarke et al., 1992), ICI 182,780 appears to be a
substrate for the P-glycoprotein efflux pump
(De Vincenzo ef al., 1996), a major contributor to the
blood-brain barrier (Cordon-Cardo et al., 1989). Con-
sistent with this observation, initial studies suggest that
this antiestrogen does not enter the brain in high
concentrations (Howell et al., 1996). Pure antagonists
may further exacerbate bone loss, a concern that also
applies to aromatase inhibitors (Dowsett, 1997), but this
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issue may be addressed with the concurrent use of
bisphosphonates or other therapies for osteoporosis.
Clinical experience with ICI 182,780 has been reviewed
by Howell (2001).

Antiestrogens and breast cancer treatment

Antiestrogens are effective in the adjuvant, metastatic,
and chemopreventive settings and clearly induce sig-
nificant increases in overall survival in some breast
cancer patients (EBCTCG, 1992, 1998). Unlike aroma-
tase inhibitors (inhibit estradiol biosynthesis), which are
administered as single agents only to women with
nonfunctioning ovaries, TAM can be given irrespective
of menopausal status. In the adjuvant setting, TAM is
administered at a daily oral dose of 20 mg, and several
studies have now shown that the optimal duration of
treatment is 5 years. While shorter (2 years) and longer
(10 years) treatment durations produce notable re-
sponses, the risk : benefit ratios are strongly in favor of
5 years of treatment (Stewart et al., 1996; EBCTCG,
1998).

While molecular predictors of tumor responsiveness
are rare for most breast cancer treatments, expressions
of ER and PR strongly predict for a response to
antiestrogens. Up to 75% of breast tumors expressing
both receptors (ER+ /PR +) respond to TAM. Re-
sponse rates are somewhat lower in ER 4 /PR— tumors
(~34%) and ER—/PR + tumors (45%). The response
rate in ER—/PR + may be an overestimate; relatively
few tumors with this phenotype have been evaluated and
the ER— assessment may include false-negative ER
measurements. Only a small proportion of ER—/PR~-
tumors respond to antiestrogens (< 10%), perhaps also
reflecting false-negative ER measurements. Indeed, the
most recent meta-analysis from the Early Breast Cancer
Trialists Collaborative Group (EBCTCG) found no
significant reduction in recurrence rates in patients with
ER-poor tumors who received adjuvant TAM
(EBCTCG, 1998).

Results of the 1998 EBCTCG meta-analysis found
limited evidence for a TAM-induced increase in the risk
of death from any cause in women with ER-poor
tumors. Why TAM might be detrimental to some
women is unclear. However, ER— tumors are known
to exhibit a more aggressive phenotype associated with
lower rates of overall survival (Aamdal et al., 1984) and
would be expected to recur earlier and more frequently.
Estrogenic effects of TAM in these women also could
have increased the number of deaths from cardiovas-
cular disease and stroke, reflecting the data noted above
from recent studies of estrogenic HRT use (Viscoli et al.,
2001; WHI, 2002).

Antiestrogens and breast cancer chemoprevention

TAM’s ability to inhibit contralateral breast cancers and
relatively low incidence of serious side effects led to
studies into its potential use as a chemopreventive agent
for patients with a high breast cancer risk. Three large,
randomized, chemoprevention studies with TAM have




been performed to date: the NSABP P-1 trial (n =13 388
participants) (Fisher et al., 1998), the Royal Marsden
Trial (n=2471 participants) (Powles ef al., 1998), and
the Italian Chemoprevention Trial (n=5408 partici-
pants) (Veronesi et al., 1998). Outcomes have been
mixed: no significant reduction in risk was seen in the
initial reports of either the UK or Italian trials, whereas
the P-1 trial reported significant reductions in the
incidence of both noninvasive (50%) and invasive
(49%) breast cancers. A recent update on the Italian
Trial reports an 82% TAM-induced reduction in the
breast cancer risk among women at high risk for ER +
breast cancer (Veronesi et al., 2003). In the NSABP trial,
reductions in breast tumor incidence were seen only in
the incidences of ER+ tumors (Fisher et al., 1998).
Reasons for the disparities among the trials have been
widely discussed; these tend to focus on differences in
patient populations, subject eligibility criteria, and study
size. Results from the NSABP P-1 trial, which are
broadly consistent with the 39% reduction in contral-
ateral breast cancer incidence reported for TAM use
(EBCTCG, 1992), are usually considered the more
definitive. These data contributed to the decision by
the Federal Drug Administration (USA) in October
1998 to allow the use of TAM as a chemopreventive
agent for breast cancer. More recently, NSABP has
reported TAM-induced reductions in the risks of
adenosis, fibrocystic disease, hyperplasia, metaplasia,
fibroadenoma, and fibrosis in the P-1 trial (Tan-Chiu
et al., 2003).

Estrogens and breast cancer

Since antiestrogen action and resistance are intimately
affected by estrogen exposure, we briefly address the
role of estrogens in breast cancer. An association
between parity and breast cancer risk was observed by
the 16th century Italian physician Bernadino Ramazzini
(1633-1714) in his ‘De Morbis Artificium’ published in
1700. The ability of ovariectomy to induce remissions in
premenopausal breast cancer patients was shown by the
Scottish physician George Beatson, the first clear
evidence of an effective endocrine therapy for this
disease (Beatson, 1896). More recent epidemiologic
data show clear associations of early age at menarche,
late age at menopause (Nishizuka, 1992), pregnancy
(Hsieh et al., 1994), obesity (Hulka and Stark, 1995),
serum estrogen concentrations (EHBCCG, 2002), and
use of estrogenic HRTs (Magnusson et al., 1999,
Schairer et al., 1999, 2000) or oral contraceptives
(Berger et al., 2000) with an increase in the risk of
developing breast cancer. Risk appears related to the
timing of exposure and whether the cancer develops
during the premenopause or postmenopause (Hilakivi-
Clarke et al., 2002).

Precisely how estrogens affect breast cancer risk
remains controversial and outcome may be dependent
upon the timing and duration of exposure. During the
postmenopausal years, estrogenic stimuli are more
closely associated with an increased breast cancer risk.

Antiestrogen resistance
R Clarke et a/

However, we have recently reviewed evidence consistent
with the hypothesis that, depending on the timing of
exposure, increased estrogenic exposure can be asso-
ciated with a reduced risk of breast cancer (Hilakivi-
Clarke et al., 2002). For example, estrogenic stimuli
during childhood or the premenopausal years may affect
breast development such that the breast is less suscep-
tible to transformation. Estrogens may reduce breast
cancer incidence in some women by altering mammary
gland development and inducing the expression of genes
involved in DNA repair (Hilakivi-Clarke et al., 1999a;
Hilakivi-Clarke, 2000).

For the purposes of this review, we will focus on the
aspects of estrogen exposure that are associated with
increased breast cancer risk and the survival/prolifera-
tion of established neoplastic breast cells. Hence,
estrogens can be considered to act either as promoters
(factors that stimulate the growth and/or survival of
existing transformed cells) or as initiators (factors that
induce the genetic damage that leads to cellular
transformation). Evidence that estrogens are tumor
promoters is well established from both experimental
and clinical observations. For example, the growth of
several human breast cancer cell lines in vitro and in vivo
is stimulated by estrogenic supplementation. Indeed,
such estrogenic supplementation is effective whether
administered as classical estrogens (e.g., estradiol,
estrone, or estriol) or plant-derived phytoestrogens such
as the isoflavone genistein (Hsieh et al., 1998). In
addition, antiestrogens, aromatase inhibitors, leutinizing
hormone releasing hormone agonists/antagonists, and
ovariectomy are effective in the treatment of some
breast cancer patients, all of which limit the interaction
between a promotional (estrogenic) stimulus and cancer
cells.

As tumor promoters, the effects of estrogens are
related to the duration and timing of exposure. With-
drawal of an estrogenic stimulus that acts as a promoter
could produce an eventual reduction in risk because it
no longer promotes the growth or survival of existing
cancer cells. Pregnancy produces a natural and sig-
nificant increase in circulating estrogens, but only a
transitory increase in breast cancer risk in young
women. Indeed, if the first pregnancy was at a young
age, the short-term increase may eventually translate
into a lifetime reduction in breast cancer risk (Hsieh
et al., 1994). The increased breast cancer risk associated
with either oral contraceptive or estrogenic HRT use is
also related to the recency of use. Risk begins to reduce
with the cessation of use and is highest in current users
(CGHFBC, 1996; Schairer et al., 2000).

Evidence that estrogens act as chemical initiators is
more controversial. Estrogens can exhibit carcinogenic
activity in some animal models; perhaps the best-known
example is the ability of estrogens to induce renal
cancers in Syrian hamsters (Kirkman, 1972). However,
compelling evidence that estrogens initiate mammary
cancer in animals is hard to find. In the 1930s,
Lacassagne (1932) performed several studies in male
mice and showed that administration of large doses of
estrone can induce mammary tumors. While consistent
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with an estrogen-mediated initiation of mammary
cancer, it is possible that the mice were infected with
the mouse mammary tumor virus (MMTYV). Other than
some transgenic/null mouse models, only in the ACI rat
does estrogen administration reproducibly produce a
high incidence of mammary tumors (Cavalieri and
Rogan, 2002).

Reactive estrogen semiquinone/quinone intermedi-
ates, produced by the redox cycling of estrogen
metabolites hydroxylated at the C3 and C4 positions
of the aromatic A-ring, are the most likely estrogen
initiators (Cavalieri et al., 1997; Bishop and Tipping,
1998; Cavalieri and Rogan, 2002). These reactive species
can generate a substantial intracellular oxidative stress
and directly damage DNA through the production of
DNA adducts. Such events could define reactive
estrogen metabolites as initiators, rather than as merely
promoters of carcinogenesis. Recently, the National
Toxicology Program (2003) listed, for the first time,
steroidal estrogens as carcinogens.

Estrogen independence and antiestrogen resistance

Estrogen independence and antiestrogen resistance are
often considered to be synonymous, which is not
surprising since ER— tumors are definitively estrogen-
independent and very rarely respond to antiestrogens,
ovariectomy, or aromatase inhibitors. Nonetheless,
several observations suggest that various forms of both
estrogen independence and antiestrogen resistance exist
and that these may be biologically and clinically very
different. For example, second-line responses to aroma-
tase inhibitors after response and recurrence on TAM
are common (Goss et al., 1995; Buzdar et al., 1996).
Crossover between more similar compounds, such as
other nonsteroidal antiestrogens, rarely produces sec-
ondary responses (Johnston, 2001), although crossover
to structurally different antiestrogens can produce
secondary responses in patients. Tumors that respond
first to TAM (triphenylethylene) show a marked
response to ICI 182,780 (steroidal) administered upon
failure of the TAM therapy (Howell e? al., 1995). Similar
patterns of responses were seen previously in experi-
mental models (Briinner et al., 1993b). For example,
MCF-7 human breast cancer cells were selected for the
ability to grow in the absence of estrogens (Clarke et al.,
1989a). The selected cells are estrogen-independent
because they no longer require estrogens for growth
either in cell culture or as xenografts in athymic nude
mice. However, when exposed to either 4-hydroxyta-

moxifen or ICI 182,780, the cells are growth inhibited
both in vitro and in vivo (Clarke et al., 1989a; Briinner
et al., 1993a,b).

These observations strongly imply that the ability of
breast cancer cells to grow in a low or nonestrogenic
environment is not always synonymous with antiestro-
gen resistance. Four antiestrogen resistance phenotypes
have been defined (Clarke and Briinner, 1995) and are
shown in Table 1. The clinical applicability of these
phenotypes remains to be determined but they are useful
for defining resistance phenotypes in experimental
models.

Intratumor estrogens and antiestrogens and exogenous
estrogenic exposures

Antiestrogens act within cells, primarily to compete with
available estrogens for binding to ER. Thus, the
antiestrogenic potency of any compound is related to
its affinity for ER relative to that of any estrogens
present and the concentrations of both the antiestrogens
and estrogens. The data in Table 2 show the relative
affinities of the primary estrogens, antiestrogens and
their major metabolites, and selected environmental
estrogens and phytoestrogens. Intratumor estrogen
concentrations are affected by several factors including
serum estrogen concentrations and local estrogen
production within the breast. Serum estrogen concen-
trations are affected by the presence or absence of
functional ovaries and exogenous estrogen use such as
HRT, some oral contraceptives, and various dietary
components.

Passive diffusion into cells across the plasma mem-
brane appears to be TAM’s and estradiols’s primary
method of entry into cells. However, both TAM and
estrogens are extensively bound to serum proteins and
probably also to cellular proteins in tumor/nontumor
cells within the breast (Clarke er al., 2001b). Release
from serum proteins likely occurs within the tumor
vasculature, with both estrogens and antiestrogens being
subsequently sequestered within tumor/nontumor cells
by intracellular proteins. The lipophilicity of both
hormone and drug, and the significant amount of
adipose tissue in the breast, may produce a local
reservoir for both estrogens and antiestrogens. How-
ever, the concentration of free drug/hormone within
cells and serum may be relatively low. Intracellular
sequestration of drug/hormone in tumor and stromal
cells could produce a concentration gradient favoring

Table 1 Antiestrogen resistance phenotypes

Antiestrogen resistance

Phenotype

Type 1
Type 2

Fully responsive to antiestrogens and aromatase inhibitors
Resistant® to nonsteroidal antiestrogens but responsive to ICI 182,780 and aromatase inhibitors

(or resistant to 1CI 182,780 but responsive to nonsteroidal antiestrogens and aromatase inhibitors)

Type 3
Typc 4

Resistant to all anticstrogens but potentially responsive to aromatase inhibitors
Multihormone-resistant (resistant to all endocrine therapics and includes ER— and PR~ tumors)

*Resistance can be considered as unresponsiveness and antiestrogen-stimulated phenotypes
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Table 2 Relative binding affinitics (approximate) of sclected estro-
gens, anticstrogens, and environmental estrogens and phytoestrogens®

Compound Relative binding affinity
(17B-estradiol = 100)
ERu« ERB
Estrogens
Estrone 60 37
Estriol 14 21
Antiestrogens
Tamoxifen 7 6
4-Hydroxytamoxifen 178 339
Nafoxidine 44 16
ICT 164,384" 85 166
Raloxifene 69 16
Clomiphcene 25 12
Environmental estrogens and phytoestrogens
Genistein 5 36
Resveratrol <L1x10* <1.6x10*
Zcaralenol 7 5
o0,p'-DDE 2(2-chloro-phenyl)-2- <0.01 <0.01
(4-chlorophenyl)-1,1dichlorocthylene
Bisphenol A 0.01 0.01

*Adapted from Kuiper et al. (1998), Kuiper ef al. (1997) and Bowers
et al. (2000); the methods for estimating ER binding are not the same
across these studies but all three express binding relative to the values
estimated for 17f-estradiol. ®ICI 182,780 is an analog of ICI 164,384

diffusion into local tissues. If the affinity and capacity of
tissue for drug/hormone exceed that of blood, significant
accumulation within tumors would likely occur. Data in
Table 3 (adapted from Clarke et al., 2001b) illustrate
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several points regarding the pharmacokinetics of estro-
gens and antiestrogens. For example, intratumor con-
centrations of both estradiol and TAM are much higher
than their respective concentrations in the serum. For
estrogens, where the primary estrogen present in tumors
is 17B-estradiol, both biosynthesis within the tumor and
significant uptake from blood occur.

The ability of estrogens and antiestrogens to compete
for binding to ER is likely to reflect intracellular
availability. While their respective free concentrations
are largely unknown, the data in Tables 2 and 3 imply
that many breast tumors should accumulate a sufficient
excess of TAM and its major antiestrogenic metabolites
to compete readily with intratumor estrogens. If the
estimate for estradiol concentrations (1.29 nMm) and the
reported concentrations for TAM and its major
metabolites (~3 uMm TAM + ~ 7 um N-desmethyltamox-
ifen + ~ 0.2 uM 4-hydroxytamoxifen) in tumors are good
approximations (Table 3), antiestrogenic metabolites
may accumulate to levels up to 10*fold higher than
estradiol. While TAM and N-desmethyltamoxifen have
relative ER binding affinities about 10% that of
estradiol (Table 2), overall, antiestrogenicity may exceed
estrogenicity in most TAM-treated breast tumors by
100-fold (assuming equivalent availability).

This interpretation is consistent with the initial
antiestrogenic activity of TAM seen in most ER +
breast cancers. No compelling evidence shows that
TAM becomes extensively metabolized to purely estro-
genic metabolites in patients with antiestrogen-resistant
cancer. Furthermore, little evidence has been produced
to suggest that the balance of TAM metabolism is such

Table 3 Serum and intratumor estrogen and tamoxifen concentrations®

Serum concentrations
Mean estimates of estrogen concentrations
Follicular phase Luteal phase

<0.28nM <l.InM
Pregnancy
<150 nm
Breast cancer Controls
0.114nM 0.093 nm

Estimates of tamoxifen concentrations
Concentration Drug/metabolitc

<l.lpm Tamoxifen +metabolites
<4.0um Tamoxifen
<6.0uM N-desmethyltamoxifen

Intratumor concentrations

Mean estimates of estrogen concentrations

Breast tumors Non-neoplastic
1.29nm 0.76 nm

Mean estimates of tamoxifen concentrations
Concentration Drug/metabolitc

<3.0um Tamoxifen

<4.0um Tamoxifen

<7.0um N-desmethyltamoxifen
<8.0um N-desmethyltamoxifen
<0.2um 4-Hydroxytamoxifen

Comments
Normal menstrual cycle
Normal third trimester (when estrogen concentrations arc highest)

All postmenopausal women; in most studies these differences
are statistically significant’

«

Similar to normal tamoxifen regimen
High-dose tamoxifen regimen
High-dose tamoxifen regimen

Comments

Non-neoplastic includes adjacent normal, fibroadenomas, adipose tissues

Mecan estimates vary across studies. The values represented herc arc
among the higher of the reported mean valucs®

Breast tumors

Brain metastascs from breast cancer

Breast tumors

Brain metastascs from breast cancer

Brain metastases from breast cancer

2See Clarke et al. (2001) as to how these values were obtained and for citations to the source publications
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that sufficient concentrations of its estrogenic metabo-
lites are produced to overcome TAM’s intracellular
cumulative antiestrogenicity (combination of parent
drug plus its antiestrogenic metabolites) (Clarke et al.,
2001b). Currently, no clinically relevant ER variants/
mutants have been described that could adequately
affect intratumor pharmacology to an extent sufficient
to offset this balance in favor of a TAM-stimulated or
other antiestrogen-resistant phenotype in a significant
proportion of breast cancers.

Changes in TAM influx/efflux could alter its intracel-
lular concentrations, and limited evidence suggests that
this may occur in some tumors. However, the extent to
which it occurs and the mechanisms driving such
changes are unclear (Clarke et al., 2001b).

Exogenous estrogenic exposures and their effects on
antiestrogen resistance

Since estrogens compete with antiestrogens for ER
binding, any compound with either estrogenic activity or
the ability to increase estrogen exposure could affect
response to antiestrogens. Estrogenic exposures come in
many forms, including plant and environmental estro-
gens (Hilakivi-Clarke et al., 1999b; Clarke et al., 2001a),
dietary exposures that affect the levels of endogenous
estrogens (Hilakivi-Clarke et al., 1997), and estrogenic
HRT (Clarke et al, 2001b). Dietary antioxidant
exposure also may affect antiestrogen responsiveness
(Clarke et al., 2001b) and some women already take the
most potent natural antioxidant (vitamin E) as an
alternative medicine for controlling menopausal symp-
toms (Stampfer et al., 1993; Barton et al., 1998; Koh
et al., 1999).

The inclusion of women on HRT in some of the
chemoprevention trials has been one of the issues raised
to explain the lack of TAM’s activity in these trials. It is
unlikely that HRT would raise serum estrogens beyond
levels seen in TAM responsive premenopausal women.
However, the nature of the estrogenic exposure is very
different between postmenopausal women on HRT and
premenopausal women. More data are required to
assess directly the contribution of HRT to TAM
responsiveness.

Dietary exposures and tamoxifen activity

Several dietary components, including those present in
dietary fats, soy, fruits, vegetables, and alcohol, have
been suggested to have either protective or harmful
effects on the breast. Some of these dietary factors, such
as dietary fats and soy, can alter circulating estrogen
levels (Lu et al., 2000) and interact with ER (Wang et al.,
1996b; Collins et al., 1997, Zava and Duwe, 1997).
TAM’s ability to affect the growth of ER + tumor cells
may be altered by dietary intakes of fats and soy. Fats,
soy, and other dietary components also modify other
cell signaling pathways (Agarwal, 2000; Bouker and
Hilakivi-Clarke, 2000; Clarke et al., 2002). If TAM
signals through the same pathways, a dietary factor
might modify TAM’s ability to inhibit the growth of
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malignant breast cells (ER-dependent or -independent
interactions). Dietary components that alter signaling of
a pathway that affects tumor growth independent of
TAM also could either potentiate or reverse TAM’s
effects. Data from both in vitro and in vivo studies
strongly support the hypothesis that at least some
dietary factors modify TAM’s actions in the breast.

Soy, dietary fat, vegetables, and antiestrogen
responsiveness

High soy protein intake has been proposed to contribute
to low breast cancer incidence among Asian women
(Adlercreutz, 1995). A recent meta-analysis shows that a
high intake of soy is associated with a reduced risk of
developing premenopausal, but not postmenopausal,
breast cancer (Trock et al, 2001). Soybeans contain
large amounts of the isoflavones daidzein and genistein
(Barnes et al., 1994; Adlercreutz, 1995). Genistein has
many biological effects that could potentially reduce
breast cancer risk, including inhibition of tyrosine
kinase, EGFR tyrosine phosphorylation, and topoi-
somerase II activities. It also arrests cell cycle progres-
sion at G,~M, induces apoptosis, has antioxidant
properties, modifies eicosanoid metabolism, and inhibits
in vitro angiogenesis (see the review by Messina et al.,
1994). While each of these actions of genistein could
influence antiestrogen responsiveness, they occur pri-
marily at pharmacologic rather than physiologic ex-
posures. Humans consuming high levels of soy-based
food products have less than 1um of circulating
genistein (Messina et al., 1994), and 30-185 uM genistein
is required to induce many of the above-mentioned
effects in experimental models in vitro where bioavail-
ability is already likely to be greater than in vivo.

At physiological concentrations, genistein exhibits
estrogenic properties that could enhance breast cancer
risk. Genistein activates the ER (Wang ez al., 1996b;
Collins et al., 1997; Zava and Duwe, 1997) and induces
proliferation of human breast cancer cells in vitro
(Martin et al., 1978; Wang et al., 1996b). Genistein also
stimulates proliferation of mammary epithelial cells in
rodents (Santell ez al., 1997; Hsieh et al., 1998) and in
women (Petrakis et al., 1996; McMichael-Phillips et al.,
1998). Data from ovariectomized athymic mice, repre-
senting a model of postmenopausal breast cancer, show
that genistein and soy protein isolate both promote the
growth of MCF-7 xenografts (Allred et al., 2001).
Furthermore, a recent study in athymic mice showed
that genistein blocked the inhibitory effect of TAM on
the growth of MCF-7 xenograft (Ju et al., 2002). These
results suggest caution in consuming high levels of
genistein among postmenopausal women who are taking
TAM for their breast cancer or to reduce their risk of
developing breast cancer.

Very little is known about possible interactions
between high dietary fat intake and the activity of
TAM. TAM has beneficial effects on some aspects of
fatty acid metabolism, for example, by reducing
cholesterol levels (Reckless et al., 1997). Diets contain-
ing n-3 PUFAs can increase the efficacy of cytotoxic




drugs against ER— human breast cancer xenografts
(MDA-MB-231) (Hardman et al., 2001). A recent study
suggests that n-3 PUFAs restore TAM’s ability to
inhibit cell growth (DeGraffenried et al., 2003). Oleic
acid appears to affect indirectly TAM’s dissociation
from cellular antiestrogen binding sites (Hwang, 1987),
an effect that could increase the intracellular concentra-
tions of free drug. Since n-3 PUFAs have many
biological activities, they may play a role in modifying
TAM’s actions, including an ability to inhibit protein
kinases (Mirnikjoo et al., 2001). y-linolenic acid has
several properties that might make it antitumorigenic.
Kenny et al. (2001) have shown that y-linolenic acid
reduces the growth of MCF-7 xenografts, reduces ER
levels in these cells, and potentiates TAM’s ability to
inhibit cell growth. However, the precise mechanism of
action of y-linolenic acid remains to be determined.

Cruciferous vegetables, such as broccoli, cabbage,
caulifiower, and brussel sprouts contain high levels of
indole-3-carbinol (I3C) and its metabolite 3,3-diindoly-
methane (DIM). These compounds have been shown to
exhibit chemopreventive activity in multiple target
organs including the breast (Bradlow et al, 1999).
Several mechanisms of action have been proposed for
I3C and DIM, including changes in phase I and II
enzyme activities and in cell cycle progression. Data
from Katchamart and Williams (2001) show that I13C
and DIM downregulate the expression of the cyto-
chrome P-450 components that convert TAM to its
more potent metabolites. Thus, these authors propose
that high intake of cruciferous vegetables might reduce
TAM efficacy. Vitamin A/retinoids can interact with
estrogens, and some studies suggest that retinoids can
increase the activity of TAM (McCormick and Moon,
1986; Anzano et al., 1994). Little evidence from human
studies exists to support directly this interaction.
However, remarkably few studies have been undertaken
in this area and additional data are clearly needed.

Estrogen receptors and antiestrogen resistance

Two ER genes have been identified: the classical ERo on
human chromosome 6q25.1 and ERf on chromosome
14922-25. Each receptor acts as a nuclear transcription
factor that binds responsive elements (estrogen respon-
sive elements; EREs) within the promoters of target
genes (Figure 1a) or binds to other proteins and affects
their abilities to regulate transcription (e.g., AP-1, SP-1;
Figure 1b). ERa and ERf homology is limited in the
transcriptional regulatory domains, particularly in the
N-terminal region. Both ER homodimers and hetero-
dimers are formed and these may differ in their ability to
affect transcription at some promoters (Tyulmenkov
et al., 2000). For example, the ER binds directly to
EREs, which are broadly defined consensus sequences
with some tolerance to variation in their sequence. ER
also binds to, and regulates the transcriptional activa-
tion of, other transcription factors including AP-1, SP-1,
and at cyclic AMP response elements (CRE) (Paech
et al., 1997; Castro-Rivera et al., 2001; Liu et al., 2002b).
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Figure 1 Estrogen receptor (ER) function—a simplistic represen-
tation. ERs function as nuclear transcription factors, bound to
either estrogen responsive elements (a) or to proteins bound to
other responsive elements, for example, AP-1, SP-1 (b). Transcrip-
tion can be induced or repressed, with the pattern of genes affected
likely reflecting the mix of coregulators available to bind to the
various ER-transcription complexes formed on respective promo-
ters. Evidence for both ligand-dependent and -independent
activation exists, and it is clear that different ligands can induce
different conformations in the bound ER proteins. ER =estrogen
receptor; in (a) the hatched elipse represents a coregulator; in (b)
the split elipsc represents a protein complex such as AP-1 or SP-1

The patterns of ER expression vary in the mammary
gland. In most normal mammary epithelia, the two
receptors are rarely expressed in either a high proportion
of cells or at very high levels. The ERa: ERf ratio may
change during carcinogenesis, such that the ERa
proportion increases as the cells acquire a more
progressed phenotype. Whether this change reflects an
increase in ERa or a decrease in ERf expression
(Leygue et al., 1998), and whether it is a function or a
consequence of malignant transformation or progres-
sion is unclear. ERa appears to be the more highly
expressed of the two receptors in breast tumors (Leygue
et al., 1998; Speirs et al., 1999a), at least when both are
coexpressed in the same cells (Saunders ez al., 2002).
However, some of the few existing studies that measured
both ERa and ERp proteins have been complicated by
the use of different antibodies of occasionally uncertain
quality (Speirs, 2002).

When occupied by estradiol, ERx and ERf can
produce similar effects on gene regulation in simple
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ERE-driven reporter construct studies (Kuiper et al.,
1996). However, the ligand binding profiles of the two
receptors may be species specific (Harris et al., 2002).
Furthermore, at other promoters, the two receptors
have very different activities. For example, ERa and
ERp have opposite effects on transcription driven by
AP-1, SP-1, or CRE sites in promoter-reporter assays
(Paech et al., 1997, Castro-Rivera et al., 2001;
Maruyama et al., 2001a; Liu ef al., 2002b). Differential
regulation of cyclin D1 by ERa and ERJ has been
reported (Liu et al., 2002b), and ERp can block the
transcriptional activation of AP-1 by ERx (Maruyama
et al., 2001b). Changes in ER expression/activation
might be important in affecting endocrine responsive-
ness if genes driven primarily by AP-1, SP-1, and/or
CRE elements are rate limiting in affecting signaling to
apoptosis/proliferation/survival.

The relative importance of ERa and ERf in affecting
antiestrogen responsiveness remains to be established.
However, the extensive existing data with well char-
acterized ERa antibodies that do not recognize ERf
allow for some speculation. Ligand binding ER assays
(do not differentiate between ERa and ERf) and
immunohistochemical detection of ER in patients’
tumors (detect ERo only) broadly agree in their
determination of ER-positivity and prediction of TAM
sensitivity (Alberts et al., 1996; Molino et al., 1997).
Thus, whatever the role of ERf, measuring ERa is
sufficient to predict whether or not a patient is likely to
benefit from treatment with antiestrogen, aromatase
inhibitor, or ovariectomy. These findings also would be
consistent with a requirement of ERa for antiestrogen
sensitivity, which is further consistent with data from
most experimental models in which ERa is usually the
dominant ER isoform expressed.

Since loss of ER« (i.e., the tumor phenotype changes
from ERa+ to ERa-) is relatively uncommon as an
acquired antiestrogen resistance mechanism, it seems
unlikely that many resistant tumors acquire a true
ERoa—/ERpf + phenotype. If there is a role for ERS, it
may be driven by changes in its expression level relative
to ERa, since heterodimers are functionally important
(Pettersson et al., 1997, Tyulmenkov et al., 2000). When
introduced into ER— MDA-MB-231 breast cancer cells,
ERp produces ligand-independent inhibition of prolif-
eration, whereas ERa-mediated effects are ligand-
dependent (Lazennec et al., 2001). A ligand-independent
suppression of growth by ERf might confer a multi-
hormone-resistant phenotype (Schinkel ez al., 1991)
(multihormone resistance is Type 4 resistance as shown
in Table 1), since ICI 164,384 could not block the
ligand-independent effect of ER expression in MDA-
MB-231 cells (Lazennec et al., 2001).

Currently, determining the relative importance of
ERp expression in antiestrogen responsiveness is limited
by the lack of adequate data regarding ERf protein
expression in responsive and resistant breast tumors.
The possible association of ERf mRNA expression with
a poor prognosis (Dotzlaw et al., 1999; Speirs et al.,
1999b) may further complicate matters. Only one small
study (n=9 TAM resistant; n=8 TAM responsive
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tumors) has explored the association of ERf expression
with antiestrogen resistance. The authors reported
increased ERB mRNA expression in antiestrogen-
resistant tumors (Speirs ef al., 1999a). Nonetheless, the
outcome is potentially confounded by the very small
number of cases, the fact that only ERf mRNA was
measured, and the possible association of ERf expres-
sion with a more aggressive phenotype (Dotzlaw et al.,
1999; Speirs et al., 1999b).

Several mutant and splice variant forms of both ERa
and ERp have been reported and previously reviewed
(Hopp and Fuqua, 1998; Murphy et al, 1998).
Compelling evidence that any of these are functionally
relevant in driving a significant proportion of breast
cancers remains largely unconvincing. For example,
most data only measure mutant mRNAs that may not
be translated into biologically relevant protein concen-
trations in cells. Most tumors that express mutant ER
concurrently express the wild-type receptor, with the
mutant representing a relatively small proportion of
total ER. A mutant ERa (D351Y) that perceives TAM
as an agonist has been described in some TAM-
stimulated MCF-7 cell variants (Jiang et al., 1992).
Similarly, changes in the F-region of the receptor also
can affect the activities of estradiol and 4-hydroxyta-
moxifen (Schwartz et al., 2002). The agonist activities of
raloxifene are also increased in D351Y (Liu et al.,
2002a). Expression of this mutant in breast tumors in
patients has not been reported. Thus, the clinical
relevance of this ER mutant or functionally similar
ER mutant proteins remains unclear. However, our
understanding of the role of ER mutants and variants
may change in the near future (Fuqua, 2001). Currently,
little compelling evidence exists in support of mutant or
splice variant ERa and/or ERfJ contributions to either
de novo or acquired antiestrogen resistance or hormone
independence (Karnik et al., 1994; LeClercq, 2002).
However, the importance of receptor mutations and
varinats in other diseases suggests that a role for these
modifications of ERs may yet be shown to be important.

Coregulators of estrogen receptor function and
antiestrogen resistance

Whatever the ERE and/or other transcription factor
bound, the ability to affect transcription of a target gene
is further modified by multiple components of the
transcription complex. Perhaps the most widely studied
modifiers of ER-mediated transcription are the coregu-
lators. Coregulators can be either coactivators (indu-
cers) or corepressors (inhibitors) of gene transcription.
These molecules often act by altering histone acetylation
(Kim et al., 2001). While most studies of coregulator
action have been carried out with ERa, ERf function is
also affected (Tremblay et al., 1998), as is the activity of
other members of the steroid hormone receptor super-
family.

ER coregulators in several protein families have been
described in recent years, almost all of which are
ubiquitously expressed (Graham et al, 2000) and
defined initially by their ability to affect ER-mediated




transcription in simple promoter—reporter transcription
assays. Considerable redundancy is evident, with many
coactivators or corepressors exhibiting similar transcrip-
tion regulatory effects in comparable/identical biologi-
cal assays. A full understanding of the role of
coregulators may be further complicated by gene
promoter-, tissue-, and species-specific effects, all of
which contribute to the cellular context. Thus, the
pattern of other proteins expressed in a cell (cellular
context) may greatly influence how and whether a
specific coregulator is the dominant effector in regulat-
ing a ligand’s ability to affect ER-mediated transcription
(Clarke and Briinner, 1996; Clarke et al., 2001b).

The ability of an ER-driven transcription complex to
recruit coregulators can be strongly ligand-dependent.
For example, 4-hydroxytamoxifen induces a conforma-
tion that blocks the coactivator recognition groove in
ER (Shiau et al., 1999). Estrogens and antiestrogens
have long been known to affect the physical properties
of ERs (Miller et al., 1984). The importance of ligand to
receptor conformation and activation led to early
conceptual models that have received renewed attention
in recent years. Perhaps the most important information
has come from crystallographic studies of the ER
binding domain complexed with different ligands
(Brzozowski et al., 1997; Pike et al., 1999; Shiau et al.,
2002). Several laboratories have used these data to
describe conceptually similar models of ER function
when liganded with either agonists or antagonists
(Wurtz et al., 1998; Pike et al., 1999; Liu et al., 2002a,
Shiau et al., 2002). The major limitations of such studies
are the use of only the ligand binding domain (requires
the assumption that no other domains of the ER affect
its structure) and the use of crystal structures that may
or may not fully reflect receptor structure in the more
complex environment of a living cell. Nonetheless, data
from such studies can provide important molecular
insights into important biological responses.

The consequences of ligand-specific ER conforma-
tions are becoming evident but may be complex
(McKenna er al, 1999). The coactivator SRC-1
produces a ligand-independent activation of ER while
enhancing the agonist activity of the potent TAM
metabolite 4-hydroxytamoxifen (Smith er al, 1997).
SRC-1 also interacts synergistically with CRE binding
proteins in regulating ER-mediated transcription (Smith
et al., 1996). SMRT (corepressor) binds ER and blocks
the agonist activity of 4-hydroxytamoxifen induced by
SRC-1 (Smith et al., 1997). N-CoR is a corepressor that
binds TAM-occupied but not ICI 182,780-occupied ER
(Jackson et al., 1997). The functional relevance of this
latter observation is consistent with the lack of full
crossresistance between these two drugs in cell cultures
models (Briinner es al., 1993b) and in breast cancer
patients (Howell et al., 1995; Robertson, 2001). How-
ever, a recent study found no association between
N-CoR expression and outcome in TAM-treated
patients (Osborne et al., 2002).

It might be expected that increased expression or
function of a protein that allows an antiestrogen to act
as an agonist, or decreased expression of a coregulator
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that suppresses ER activity when the receptor is
occupied by an antiestrogen, could confer a degree of
antiestrogen resistance (Clarke and Briinner, 1996;
Clarke et al., 2001b). Evidence for this in human
cancers and experimental models remains somewhat
limited. Expression of the corepressor N-CoR is lower in
TAM-stimulated MCF-7 xenografts than in wildtype
xenografts (Lavinsky et al., 1998), but the functional
relevance of the observation in human cancers is
unclear. Chan et al. (1999) studied a small cohort of
TAM-resistant human breast tumors (z = 19) but found
no difference in the expression of TIF-1, RIP140, or the
corepressor SMRT. Lower levels of the coactivator
SUG-1 were detected in some TAM-resistant tumors,
but the consequences for antiestrogen responsiveness of
reduced SUG-1 expression require further study.

Extrapolating many of these observations to specific
biological functions in breast tumors is not always a
simple matter. For example, most data have been
obtained, of necessity, from the use of somewhat
artificial experimental models with simple promoter
conformations. ERE structure is variable across known
estrogen-regulated genes, and a promoter’s ability to
bind ERs and coregulators can be affected by its local
structure (Truss and Beato, 1993; Nardulli et al., 1995;
Lee and Lee, 2001). Different ER-antiestrogen com-
plexes also may recognize different promoter elements
(Yang et al., 1996). Thus, promoter context is likely to
be important (Clarke and Briinner, 1996). Given the
evidence of considerable coregulator redundancy and
ubiquitous expression (McKenna et al., 1999; Planas-
Silva et al., 2001; McKenna and O’Malley, 2002), it is
unclear whether measuring or affecting changes in the
expression/function of any single coregulator will prove
clinically useful. Attempting to affect resistance by
modifying the expression of any single coregulator
could be confounded by compensatory responses in
other coregulators, as likely happens for mammary
gland development in SRC-1 (Xu et al., 1998) and E6-
AP null mice (Smith et al., 2002). A greater degree of
specificity will likely be obtained by targeting specific
genes within a functionally relevant gene network
(Clarke and Briinner, 1996), which would be down-
stream of any coregulator activities. The overall balance
in the patterns and levels of expression of coactivators
and coregulators also likely contributes to ER signaling
and endocrine responsiveness. Clearly, cellular context is
critical in assessing the role of specific coregulators in
affecting a given phenotype (Clarke and Briinner, 1996;
Clarke et al., 2001b).

In summary, with such redundancy and apparent lack
of cell/tissue specificity, measuring the expression of
specific coregulators to predict an antiestrogen-resistant
phenotype may be uninformative, and affecting changes
in the expression/function of any single coregulator to
alter phenotype may prove difficult. We still do not
know with any certainty which estrogen-regulated genes
are responsible for affecting cell proliferation, cell
survival, or apoptosis in breast cancer. Hence, we do
not know the structure of their promoters, the
coregulators their occupied receptors can recruit into
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functional or inactive transcription complexes, or the
cellular context in which they exist in responsive and
resistant cells.

Estogen receptor-independent cell signaling in
antiestrogen resistance

Only a small proportion of ER—/PR— tumors respond
to antiestrogens, consistent with their primary actions
being mediated by ER. Nonetheless, many investigators
have explored ER-independent signaling as mechanisms
of antiestrogen resistance. The primary role of these
effects is unclear and some occur at concentrations that
are not pharmacologically relevant. Nonetheless, such
activities can alter ER function or may interact with
signaling downstream of ER (Figure 2). Since these
mechanisms have been reviewed in detail (Clarke et al.,
2001b), we now only briefly discuss some of the more
relevant.

Antiestrogen-induced induction of oxidative stress
responses is perhaps the most widely studied ER-
independent mechanism. The redox metabolism of
several TAM metabolites can give rise to reactive
species that can induce oxidative stress (Ye and Bodell,
1996), and both TAM and 4-hydroxytamoxifen produce
8-hydroxy-2'deoxyguanosine (Okubo et al., 1998).
TAM’s ability to induce quinone reductase (Montano
and Katzenellenbogen, 1997), protein kinase C redis-
tribution (Gundimeda et al., 1996), and lipid peroxida-
tion (Schiff er al., 2000), and our observations that
antiestrogen-resistant cells wupregulate cytochrome
¢ oxidases (Gu et al, 1997) and NFkB (Gu et al,
2002) also are consistent with antiestrogen effects on
oxidative stress responses (reviewed by Clarke et al.,
2001b).

Other ER-independent effects include perturbations
in membrane structure (Clarke et al., 1990b), changes in
protein kinase C activation and subcellular localization
(O’Brian et al., 1986; Gundimeda er al., 1996), and

ER independent events
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Figure 2 Putative role of cstrogen receptor-independent effects of
steroids and antiestrogens. These activities arc induced by
hormoncs or antihormones that are not directly mediated by their
interactions with ERs. Such effects may be necessary, but they are
not generally sufficient, to elicit a proliferative/antiproliferative
response at most physiologically or pharmacologically relevant
concentrations. ER-independent events may affect ER signaling
either by altering ER activation and/or regulating the expression/
function of other genes/proteins that are induced/repressed down-
stream of directly ER-regulated transcriptional events. The hatched
elipse represents a coregulator; ® = phosphorylation
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inhibition of the intracellular Ca** binding protein
calmodulin (Rowlands er al, 1995). Some of these
effects may be inter-related, since inhibition of protein
kinase C also blocks calmodulin-dependent EGFR
transactivation (Tebar et al, 2002). These latter
mechanisms may arise independent of ER, but would
affect ER-mediated signaling. Calmodulin has been
implicated as a coregulator of ER action (Biswas et al.,
1998), and EGFR-mediated signaling through MAPK
may affect ER activation (see for recent reviews Clarke
et al., 2001b; Santen et al., 2002).

The extent to which these mechanisms are truly ER-
independent, in that they do not affect any aspect of
ER-mediated signaling, requires further study. As with
TAM’s effects on calmodulin, ER-independent interac-
tions may have significant effects on ER activation and
function. For example, several growth factors appear to
be able to activate ER through the induction of MAPK
activities capable of changing ER’s phosphorylation
status (Clarke et al., 2001b; Santen et al., 2002). Other
ER-independent events may interact with ER-mediated
signaling downstream of ER activation. Despite these
many activities, ER expression is required for most cells
to respond to antiestrogens. While the importance of
ER-independent signaling is unclear, many such signals
may be necessary but not sufficient for affecting
antiestrogen responsiveness (Clarke et al., 2001b).

Antiestrogens, apoptosis, and cell death

Antiestrogenic exposures produce a Go/G; cell cycle
arrest (Taylor et al., 1983), whereas estrogenic exposures
are primarily mitogenic and increase the proportion of
cells in S and G,/M while reducing the proportion in
Go/G;. Such effects are generally consistent with a
cytostatic rather than cytotoxic effect. However, in our
experience, long-term selection against antiestrogens in
vitro or prolonged estrogen withdrawal from estrogen-
dependent cells also induces cell death. Similar effects
are seen in animal models. These observations are
consistent with the ability of antiestrogens to reduce the
incidence of ER + breast cancers in high-risk women
(chemoprevention) and produce an overall survival
benefit in breast cancer patients (treatment). Initially,
antiestrogens may produce a cytostatic effect that, in the
longer term, results in cell death.

The precise mechanisms signaling to and responsible
for antiestrogen-induced cell death are not fully under-
stood. Most studies are consistent with an induction of
an apoptotic or programmed cell death (Kyprianou
et al., 1991; Huovinen et al., 1993; Zhang et al., 1999).
However, many breast cancers that acquire antiestrogen
resistance still respond well to cytotoxic drugs, many of
which also signal to apoptosis (Wang et al., 1996a). Such
effects could not occur if the machinery for inducing
apoptosis was no longer intact or functional. Thus, the
effects of antiestrogens must be upstream of effector
mechanisms and reflect subtle changes in how ERs
affect signaling to apoptosis. Other signaling pathways
also may be important. Data from a recent study suggest




that adjacent normal mammary cells can induce cell
death through Fas signaling in breast cancer cells.
Resistance to this effect in some breast cancer cells was
restored by inhibition of NFxB and PI3 kinase (Toillon
et al., 2002).

Tamoxifen-stimulated phenotype in antiestrogen
resistance

While antiestrogens can induce growth arrest and
apoptosis, in some patients, initiation of TAM therapy
is associated with rapid progression of their disease,
although continuation of TAM generally produces a
beneficial response (Plotkin et al., 1978; Clarysse, 1985).
This response is called ‘tumor flare’ and is generally
attributed to the estrogenic properties often seen with
low doses of TAM. TAM takes approximately 4 weeks
to reach effective steady-state levels, producing a
window in which patients are exposed to suboptimal
and potentially estrogenic concentrations of TAM
(Buckely and Goa, 1989; Etienne et al., 1989). These
tumors are clearly not resistant to TAM, in either the
pharmacologic or clinical context. Tumor flare should
not be confused with the clinical TAM-stimulated
resistance phenotype that may occur after prolonged
TAM exposure and an initial TAM response.

Unlike tumor flare in previously untreated patients,
evidence from MCF-7 human breast cancer xenografts
suggests that some breast cancers may be initially
growth inhibited by TAM, only to later become
dependent on TAM for proliferation (Osborne et al.,
1987; Gottardis et al., 1989; Connor et al., 2001). These
xenografts also retain the ability to be stimulated by
estrogens (remain estrogen-dependent). Pharmacologi-
cally, this phenotype is not a resistance phenotype
because the cells are clearly responding to the drug.
However, a TAM-stimulated phenotype would repre-
sent clinical drug resistance because the nature of the
response has changed in a manner that supports disease
progression and would require a change in treatment.
Acquired TAM dependence appears to reflect a switch
in how the cells perceive TAM (as an ER agonist rather
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than antagonist). Several possible mechanisms may
explain how this switch occurs in MCF-7 cells, including
immunologic effects, ER mutations, and changes in
growth factor or coregulator expression.

AIBI and tamoxifen-stimulated growth as an antiestrogen
resistance mechanism

AIB-1 (amplified in breast cancer-1; also known as
SRC-3, RAC3, TRAM-1, pCIP, ACTR) is a steroid
hormone receptor coactivator located on chromosome
20q12 (Anzick et al., 1997) that has recently received
attention as a possible contributor to antiestrogen
responsiveness. AIB1 binds ER (Azorsa et al., 2001),
enhances the expression of cyclin D1 (Planas-Silva et al.,
2001), and exhibits somatic instability in some breast
cancers (Dai et al., 2002). AIBI’s function as an ER
coactivator produces increased transcriptional activa-
tion of ER (Anzick et al., 1997). A novel AIB1 isoform
(AIB-A3) has been recently reported that increases
hormone and growth factor sensitivity (Reiter et al.,
2001) and increases the estrogenicity of 4-hydroxyta-
moxifen to a greater degree than wild-type AIBI (Dr
Anna Riegel, Georgetown University Medical School,
personal communication). The mRNA for AIB-A3 was
detected at levels higher than normal cells in 7/8 breast
cancers (Reiter et al., 2001).

The data in Table 4 show some of the characteristics
of AIB1 amplification and expression in breast cancers.
Most studies have explored either gene amplification
(found in <10%) or mRNA expression (reported in 10—
64% of breast tumors). One study reported AIBI
protein expression as being above that seen in normal
breast cells in approximately 10% of breast cancers by
immunohistochemistry. Protein expression was detected
at levels similar to or greater than those seen in normal
breast cells in about 60% of ER + tumors.

The association of AIB1 with ER status is difficult to
determine from the small number of studies available.
While AIB1 amplification has been associated with ER-
positivity (Anzick et al., 1997), increased AIBI mRNA
expression has been associated with ER-negativity
(Bouras et al., 2001). Similar proportions of detectable
and undetectable AIB1 protein levels (~65%) were

Table 4 AIBI amplification and expression in breast cancer (representative studies)

DNA amplification mRNA overexpression

Protein Study

10/105 (9.5%) 48/75
(64% relative to normal)
56/1157 (4%) Not reported
ER-— 10/429 (2.3%)
ER + 45/769 (5.9%)
No data 26/83 (31%)
High AIB1: ER+ 11/26 (42%)
Low AIB1: ER+ 44/55 (80%)
3/23 (13%)
Not reported
Not reported

Not dctected (0%)
20/259 (7.7%)
Not reported

Not reported Anzick et al. (1997)

Not reported Bautista et al. (1998)

Not reported Bouras et al. (2001)

Not reported Glaeser et al. (2001)
Not reported Cuny et al. (2000)
4/41 List et al. (2001)
(9.8% relative to normal)

Present: ER+ 11/16 (69%)

Absent: ER+ 12/21 (57%)
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found in ER + tumors (12/21 had undetectable expres-
sion; 11/16 had detectable expression); no significant
correlation between AIB1 and either ER or PR was
found (List et al., 2001).

Approximately 10% of all ER + breast tumors may
overexpress wild-type AIB1 protein (List et al., 2001). It
remains to be seen if this 10% is primarily comprised of
TAM-stimulated tumors, and/or those tumors that
exhibit AIB1 gene amplification. One recent study
compared AIBI (western) and erbB2 expression. The
S-year disease-free survival was lower in those tumors
expressing high levels of both AIBI and erbB2 when
compared with those expressing high levels of AIB1 and
low levels of erbB2. AIB1 and number of positive lymph
nodes were also correlated with shorter disease-free
survival in TAM-treated compared with untreated
patients (Osborne et al., 2003).

Overexpression of AIB1 and AIBI-A3 can confer a
TAM-stimulated phenotype that should also be estrogen
responsive (Dr Anna Riegel, Georgetown University
Medical School, personal communication). The propor-
tion of AIBl-overexpressing cells that are dependent
upon this activity for survival/proliferation is unknown.
The proportion of breast biopsies that respond mito-
genically to both TAM and estradiol in short-term
culture (4%:; see below) suggests that up to one-half of
AlIBl-overexpressing tumors might be TAM-stimulated.
Since these tumors are predicted to retain estrogen
responsiveness, and may still synthesize estrogens, many
likely retain responsiveness to aromatase inhibitors.

The AIBIl-overexpressing phenotype is broadly simi-
lar to some MCF-7 TAM-stimulated xenograft models.
Since wild-type MCF-7 cells already overexpress AIBI
(Azorsa et al., 2001) and the AIB1-A3 (Reiter et al.,
2001), it is not surprising that selection against TAM
might produce a TAM-stimulated phenotype. Indeed,
this phenotype is already present in some MCF-7 cells
without TAM selection (Dumont et al., 1996). It
remains to be seen whether this model is primarily
driven by an overexpression of wild-type AIBI1. Since
the AIB1-A3 was identified in MCF-7 cells and is more
potent, this isoform may also contribute to the
phenotype of these xenografts and some human breast
cancers. Indeed, this variant may prove to be more
relevant in a broader context because of its ability to
also affect growth factor signaling, an effect that could
be important in both ER + and ER— cells (Reiter ef al.,
2001).

Clinical relevance of the tamoxifen-stimulated phenotype
as an antiestrogen resistance mechanism

Direct evidence of a TAM-stimulated resistance pheno-
type in breast cancer patients is difficult to find. Indirect
evidence may be found from studies that assessed the
frequency of a TAM withdrawal response. These
responses are evident when a tumor progressing on
TAM regresses upon cessation of the TAM therapy.
Recently, we completed an extensive review of the
literature and found 241 cases in five studies where the
authors looked specifically for evidence of TAM with-
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drawal responses (Clarke et al., 2001b). Responses were
assessed by relatively similar criteria and could be
combined into three groups: complete response, partial
response, and worse than partial response. Evidence was
found for only 3/241 complete responses (1.2%) and 13/
241 partial responses (5.4%). Over 90% of cases (225/
241) experienced a worse than partial response to TAM
withdrawal (225/241; 93.4%).

Since breast tumors are highly heterogeneous, the
TAM-stimulated population may not be the dominant
cell population in most tumors. Thus, elimination of the
TAM-dependent/stimulated population may not be
sufficient to induce a complete or partial clinical
response because the bulk of the tumor is independent
of any TAM-induced proliferation. In our evaluation of
the literature, disease stabilization was the most
common beneficial response to TAM withdrawal.
Disease stabilization might indicate tumors that contain
populations that are no longer growth-stimulated by
TAM and/or a shift in the balance between cell loss/
death and proliferation. Whatever the mechanisms, cells
in these tumors are clearly not primarily dependent
upon TAM for survival, since the great majority of
patients (194/241; 80%) experienced disease progression
upon TAM withdrawal even when disease stabilization
is included as a beneficial response (Clarke e al., 2001Db).

These data imply that the majority of tumors in
patients that progress on TAM treatment are not
progressing because they have acquired a TAM-
stimulated phenotype. Indeed, the responses reported
for TAM withdrawal may be a mix of several possible
mechanisms, including immunologic effects or other
mechanisms not directly mediated through ER. Such
indirect mechanisms can be largely eliminated in in vitro
models. A study of 224 human breast cancer biopsies
(153 ER+ and 71 ER-) used an in vitro approach to
measure more directly the frequency of an ER-mediated,
TAM- and/or estradiol-stimulated phenotype (Nomura
et al., 1990). Primary cultures of breast cancer biopsies
were studied for the ability of TAM and estradiol to
induce a mitogenic response in vitro. Only 11/153 (7%)
of ER+ cultures exhibited a mitogenic response to
TAM, a proportion surprisingly similar to the propor-
tion (16/241; 6.6.%) of patients estimated to experience
either a complete or partial response to TAM with-
drawal (Clarke et al., 2001b).

Of interest is the observation that only 6/11 of the
TAM-stimulated tumors were also stimulated by estro-
gen (Nomura et al, 1990). Thus, the TAM- and
estradiol-stimulated phenotype, as expressed by some
MCF-7 human breast cancer xenografts, reflected only
4% (6/153) of the phenotypes of the ER+ patient
biopsies and only 50% of the TAM-stimulated pheno-
types.

Together, these data imply that the TAM-stimulated
phenotype is only one of several that produce clinical
resistance. If up to 20% of initially hormone responsive
cases become TAM-stimulated to some degree (estimate
includes disease stabilization responses)—by whatever
combination of cellular, molecular, and/or immunologic
mechanisms this stimulation is conferred—a significant



number of women could be affected. Unfortunately,
that still leaves the remaining 80% at risk of acquiring
resistance through other mechanisms. From existing
evidence, the TAM- and estradiol-stimulated phenotype
exhibited by some MCF-7 xenografts may be a minor
component of all TAM resistance phenotypes. Clearly,
other antiestrogen resistance mechanisms exist, includ-
ing antiestrogen unresponsiveness, and these remain to
be identified and characterized.

Gene networks in estrogen receptor-mediated cell
signaling in antiestrogen resistance

ERo expression is both necessary and sufficient to
predict responsiveness to antiestrogens in a high
proportion of breast tumors. Thus, antiestrogen-in-
duced effects on ERa-mediated signaling are almost
certainly of critical importance in effecting clinical
responses in many tumors. Nonetheless, we still do not
know the genes responsible for signaling to these effects,
or whether the effects are primarily to induce cell death,
repress cell survival, or a combination of both. As noted
above, ER-independent events may also interact with
ER-mediated signaling and this may be important in the
broader context of a gene network that regulates
antiestrogen responsiveness. Thus, estrogens and anti-
estrogens may differentially affect a gene network that
contains some ER-regulated genes (Clarke and Briinner,
1995, 1996). More recently, this concept has been
extended to incorporate the likely ability of integrated
signals to induce apoptosis while concurrently blocking
differentiation and proliferation (Clarke et al., 2001c). It
is predicted that such a network would be affected by
TAM in TAM-stimulated models by signaling through
patterns similar to estradiol. In antiestrogen unrespon-
sive cells, signaling through this network may use
different signaling patterns and/or exhibit differential
regulation/expression of some of the same genes affected
by estradiol.

The concept of a network differs from that of a signal
transduction pathway in that it requires the integration
of several pathways, de-emphasizes the role of well-
established single signal transduction pathways, and
acknowledges the likelihood that few complex pheno-
types are likely to be driven by a single gene/pathway
(Clarke et al., 2001c). Owing to the plasticity of breast
cancer phenotypes, as illustrated by the diversity of
endocrine resistance phenotypes (Clarke and Briinner,
1995), the gene network concept seems reasonable.
Considering signaling within the constraints of a single,
linear pathway may be inappropriate. At best, such an
approach is likely to produce an incomplete solution; at
worst, it may be misleading.

Delineating the components of a signaling network
for estrogens/antiestrogens may not be simple (Clarke
and Briinner, 1996). ERs regulate gene expression
through direct binding to EREs and direct interactions
with other transcription factors including AP-1 and SP-
1. The nature of ER activation is affected by ligand
structure, and different ligands likely differentially affect
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the expression and function of the same members of any
gene network. For example, raloxifene may regulate
gene expression through novel pathways not affected by
TAM or ICI 182,780 (Yang et al., 1996), and as noted
above, antiestrogens differentially affect transcription
when bound to ER« compared with ERf. Regulation of
the entire network or key components of the network
may also be affected by ER-independent signaling, for
example, as intracellular signals are perturbed by
tumor-stromal cell interactions. Temporal and spatial
organization of signaling components in a network is
also critical. The likely complexity of network regulation
has been described elsewhere (Clarke et al., 2001c).

Accepting the principle of a network is technically
demanding because it requires experimental methods to
evaluate concurrently the expression of multiple genes
and informatic methods capable of integrating expres-
sion pattern analyses with functional information.
Methods to obtain such high-dimensional data are well
established and can be used to explore both the
transcriptome and proteome of cells and tumors.
However, data analysis methods for exploring gene
expression microarray or two-dimensional gel electro-
phoresis data remain in their infancy and it may be
several years before adequate methods become available
and widely accepted.

A novel gene expression network in antiestrogen
resistance (unresponsiveness)

We have begun to apply both proteome (Skaar et al.,
1998) and transcriptome analyses (Ellis et al., 2002; Gu
et al., 2002) to breast cancer cell lines, xenografts, and
tumors to identify potentially important components of
a large signaling network that may contribute to both
estrogen independence and acquired antiestrogen resis-
tance. Current informatic methods do not provide an
easy way to uncover rapidly and correctly an entire
signaling network. However, it should be possible to
discover integral components of an overall network and
eventually piece together these components to reveal the
entire network’s structure.

We first identified appropriate cellular models,
derived adequate algorithms for data analysis, and
began to explore the proteomes by two-dimensional gel
electrophoresis and the transcriptomes by serial analysis
of gene expression and gene expression microarrays.
Remarkably few antiestrogen resistance models are
available for study, and almost all are based on the
MCF-7 human breast cancer cell line (reviewed in
Clarke et al., 2001b). MCF-7 xenografts selected against
TAM almost exclusively produce a TAM-stimulated
phenotype, which may not be representative of the
majority of human breast cancers (see below). Thus, we
established several E2-independent but responsive
breast cancer cell variants with differing antiestrogen
response profiles.

MCEF-7 cells were first selected for an ability to grow
in vivo in ovariectomized athymic nude mice. The
resulting variant (MCF7/MIII) is estrogen-independent
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for growth both in cell culture and as xenografts (Clarke
et al., 1989a), but retains responsiveness to antiestro-
gens; that is, it is estrogen-independent but has an
antiestrogen responsive phenotype (Clarke et al,
1989a,b). We further selected these cells in vivo and
found that repeated in vivo estrogen withdrawal, which
generated the MCF7/LCC1 variant, did not substan-
tially change the antiestrogen responsiveness of the cells
(Briinner et al., 1993a). MCF7/LCCI cells were then
selected in vitro for resistance to 4-hydroxytamoxifen.
The resulting MCF7/LCC2 cells are TAM-resistant but
ICI 182,780 responsive (Briinner et al., 1993b). This
phenotype predicted for the subsequent observation that
patients responding to TAM, and then acquiring a
TAM-resistant phenotype, have a high probability of
retaining sensitivity to ICI 182,780 (Howell et al., 1995).
In marked contrast, MCF7/LCC1 cells selected for
resistance to ICI 182,780 (MCF7/LCC9 variant) acquire
resistance to ICI 182,780 and crossresistance to TAM
(Briinner et al., 1997). These models represent pharma-
cologic models of antiestrogen resistance in the context
that they no longer respond to the growth inhibitory
effects of antiestrogens. Models that reflect a switch to
an antiestrogen-stimulated phenotype are described
above.

By comparing the proteomes and transcriptomes of
several of these MCF7/LCC variants, we have begun to
identify what we believe is one component of a larger
gene network that may regulate antiestrogen respon-
siveness. The relevance of this gene subset is already
under intensive investigation in functional studies
in vitro and in vivo and for its ability to improve
prediction of antiestrogen responsiveness in breast
cancer patients.

Candidate genes

The first goal in these studies was to identify differen-
tially expressed genes and proteins that might contribute
to acquired estrogen-independent and/or antiestrogen
resistance. The data in Table 5 are adapted from our
most recent study (Gu er al., 2002) and show the
differential regulation of genes we use below to

Table 5 Genes in a putative signaling network

Gene* Analysis MCF7/LCCI vs
MCF7/LCC

EGFR Microarray Twofold
EGR-1 Microarray Threefold
IRF-1 Microarray Twofold
NFxB Microarray 0.5-fold
n-ras-related gene SAGE 0.5-fold
Superoxide dismutasc Microarray 0.5-fold
TNFa Microarray Twofold
TNF-R1 Microarray Twofold
X-box binding protein-1 SAGE 0.25-fold

*Links to thc UniGene clusters for these and other genes from this
study can be found at http://clarkelabs.georgetown.cdu/Gu_et_al/
Tables.htm. ®Since the fold differences arc relative to MCF7/LCCl
levels, genes upregulated in MCF7/LCCY cells are expressed as a
fraction
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construct one component of a putative antiestrogen
responsiveness signaling network. Functional studies of
the interactions described in this network are currently
in progress.

Comparing the MCF7/LCCI1 and MCF-7 proteomes
identified nucleophosmin (NPM) as being associated
with estrogen independence (Skaar et al., 1998). NPM is
a nucleolar, DNA/RNA-binding phosphoprotein
(Wang et al., 1994; Herrera et al., 1995) that, when
overexpressed in NIH 3T3 cells, produces a fully
transformed phenotype (Kondo et al., 1997). Down-
regulating NPM delays entry into mitosis (Jiang and
Yung, 1999), perhaps reflecting its differential phos-
phorylation by key kinases: p34°*? kinase (Peter et al.,
1990), CDK2/cyclin E (Tokuyama et al., 2001), and
protein kinase C (Beckmann ef al., 1992). NPM binds
the retinoblastoma protein to induce DNA polymerase o
(Tchoudakova et al., 1999) and decreases susceptibility
to butyrate-induced apoptosis through inducing telo-
merase activity (Liu et al., 1999). Overexpression of
NPM is seen in colorectal (Nozawa et al., 1996) and
prostate cancers (Bocker et al, 1995). NPM is
E2-regulated in breast cancer cells (Brankin et al.,
1998) and anti-NPM autoantibodies are readily detected
in the sera of breast cancer patients (Brankin et al.,
1998). NPM blocks the transcriptional activator func-
tions of both YY1 (Inouye and Seto, 1994), which
regulates B-casein production in the mammary gland
(Raught et al., 1994), and the putative tumor suppressor
gene interferon regulatory factor-1 (IRF-1). NPM
regulates the stability and activation of p53 (Colombo
et al., 2002), implicating its activities in p53-medated
effects on apoptosis, and p53 is sequested in the cytosol
of TAM-resistant MCF7/LCC2 cells (Lilling et al.,
2002).

Exploring the MCF7/LCC1 and MCF7/LCC9 tran-
scriptomes by SAGE identified several differentially
expressed genes (Gu et al., 2002). We discuss here only
the human X-box binding protein-1 (XBP-1) and the n-
ras-related gene. XBP-1 is a member of the ATF/CREB
transcription factor family that activates promoters
containing CREs (Clauss et al., 1996). During liver
regeneration, XBP-1 is associated with increased pro-
liferation and reduced apoptosis (Reimold et al., 2000),
implying a survival function that may explain the role of
its overexpression in hepatocellular carcinomas (Kishi-
moto et al., 1998). Expressed within a cluster of genes
associated with some ER + breast tumors (Perou et al.,
2000), we have recently begun to explore XBP-1's role in
normal and neoplastic breast cells.

The role of the n-ras-related gene is unclear. Ras
expression is upregulated in many breast cancers (Clark
and Der, 1995) and activates signaling through MAPKs
that are also regulated by growth factors implicated in
estrogen/antiestrogen responsiveness and mitogenesis
{Dickson and Lippman, 1995; Clarke er al., 2001b;
Santen et al., 2002). These MAPKSs have been implicated
in phosphorylating and activating ERs, an effect that
could influence antiestrogen responsiveness (Clarke
et al., 2001b; Santen et al., 2002). However, some recent
studies suggest that MAPK’s effects on ER do not



influence antiestrogen responsiveness (Atanaskova et al.,
2002).

Exploring the MCF7/LCC1 and MCF7/LCC9 tran-
scriptomes by gene expression microarrays implicated
several genes including IRF-1, nuclear factor-xB
(NFkB), early growth response gene-1 (EGR-1), epi-
dermal growth factor receptor (EGFR), and both tumor
necrosis factor-alpha (TNFa) and its receptor TNF-R1
(Gu et al, 2002). While initially identified as an
interferon-induced gene, IRF-1 has now been implicated
in regulating several critical cellular functions and is a
putative tumor suppressor in some cancers (Tanaka
et al., 1994a,b; Yim et al., 1997). IRF-1's tumor
suppressor activities may be related to its ability to
signal to apoptosis (Tanaka et al., 1994a), which can
occur in a pS53-dependent or -independent manner
(Tamura et al., 1995; Tanaka et al, 1996), with or
without induction of p21**"/~"! (Tanaka et al., 1996) or
p27*' (Moro et al., 2000), and through caspase-1
(Tamura et al., 1995), -7 (Sanceau et al., 2000) -8,
(Suk et al., 2001), and/or Fas-ligand (Chow et al., 2000).
Potentially related to these activities is the ability of
SAPK p38, which is involved in signaling to apoptosis in
response to stress, to activate IRF-1/interferon-stimu-
lated reponse element binding (Varley and Dickson,
1999). Consistent with putative tumor suppressor
activities, one small immunohistochemical study reports
reduced IRF-1 expression in neoplastic vs normal
human breast tissues (Doherty et al., 2001).

The consequence of NFxB activation is cell context
specific (Voegel er al., 1996), but it is generally
considered antiapoptotic in most cancer cells. Several
aspects of normal mammary gland development appear
dependent upon NFkB activity (Clarkson and Watson,
1999), likely reflecting its regulation by both estrogens
and growth factors (Nakshatri et al., 1997; Biswas et al.,
2000). Elevated NFxB activity arises early during
neoplastic transformation in the rat mammary gland
(Kim et al., 2000). Widely expressed in human and rat
mammary tumors (Sovak et al., 1997; Cogswell et al.,
2000), upregulation of NFxB is associated with estrogen
independence (Nakshatri ez al., 1997; Clarkson and
Watson, 1999). NF«B is the only protein known to
induce BRCA2 expression (Welcsh and King, 2001).
Several excellent reviews on NFxB signaling are
available (Bours et al., 2000; Baldwin, 2001; Karin
et al., 2002).

EGR-1 is a transcription factor with proapoptotic
activity (Das er al., 2000) and is downregulated in
DMBA-induced mammary adenocarcinomas in rats and
mouse and human breast cancer cells (Huang et al.,
1997). c-myc is a major regulator of breast cancer
proliferation and survival (Liao and Dickson, 2000) and
is among the genes downregulated by EGR-1 (Hoffman
et al., 2002). EGR-1 also blocks NFkB function
(Chapman and Perkins, 2000) and can stimulate
apoptosis through cooperation with p21¥ /el and
transactivation of p53 (Liu et al., 1998). Superoxide
dismutase (SOD) expression is increased in MCF7/
LCCY cells (Gu et al., 2002) and in TAM-stimulated
MCF-7 xenografts (Schiff et al., 2000); SOD over-
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expression was previously implicated in resistance to
TNFa (Zyad et al., 1994). A TNFo-mediated pathway
for signaling to apoptosis occurs in MCF-7 cells (Burow
et al., 1998; Egeblad and Jaattela, 2000), and measuring
serum TNF concentrations may be a useful prognostic
marker in breast cancer patients (Sheen-Chen et al.,
1997). Furthermore, IRF-1 expressionisinduced by TNFa
in some cells (Mori et al., 1999).

One component of a gene network

Using the data from our proteome and transcriptome
studies and from other published studies, we have begun
to construct a gene expression network for signaling in
antiestrogen responsiveness (Figure 3). Studying a
variant that is crossresistant to triphenylethylenes and
steroidal antiestrogens (MCF7/LCC9) provided the
opportunity to identify more broadly based resistance
signaling than might be obtained from a study of TAM-
only resistance (e.g., MCF7/LCC2 phenotype). The
apparent consistency of the interactions among the

EbB2 IGF-1

ras  PI3 k*lnase “IL6
T NPM o] IRF-1, EGF rl —eMAPK Akt

EGR- 1‘17‘ Z‘TGF-M signaling T

Caspase-1  p21CiP1 ps3
Caspase-7 IRF- 1 NFiB NerT =1 sopT
4
Cyclin D1
1 mFRt TNFaJ, mms < 1 L
v

l Signaling to Apoptosis/Cell
Cycle Arrest

Figure 3 Part of a putative gene expression network constructed
from the genes differentially expressed in MCF7/LCC9 cells (TAM
and ICI 182,780 crossresistant) and their sensitive MCF7/LCC1
parent cells. Candidate genes from other studics are also
incorporated into the network. Arrows represent those genes with
altered expression, and the consequences of these changes are
represented in the context of an anticstrogen-resistant phenotype.
For example, the low levels of IRF-1 in MCF7/LCC9 cells are
unable to induce EGFR, which remains low in these cclls.
Redundancy is evident; for example, the upregulation of NFxB
and ras may compensate for low EGFR expression because they
signal downstrcam of thc EGFR’s kinasc activity. Signaling
through this network component is expected to be different
between sensitive and resistant cells and likely also different among
some populations with the same phenotype. For example, not all
resistant cells need to modify gene expression in the same pattern as
apparently adopted by MCF7/LCC9 cells. Since ER-mediated
effects are critical in antiestrogen-induced signals in sensitive cells,
these cells may signal through the network component primarily
comprising ER-regulated genes. Whilc the interactions in this figure
arc consistent with published data, the network as represented is
not intended to be complete and the regulation of some genes may
be more complex than alluded to here. As we further evaluate
signaling in these cells, we may identify additional components of
this nctwork. {} =rcceptor-ligand complex; 1 =-expression is
increased; | =expression is reduced; other arrows show direction
of signal transduction; L = inhibition of indicated genc/function;
—e=inability to induce substantially next signal or influence next
event due to low/reduced expression/activity

}— CRE/XBP1 T
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relatively few genes incorporated into our network
component is surprising. EGF-R induces expression of
EGR-1 (Tsai et al., 2000), and expression of both genes
is lower in MCF7/LCC9 cells (Gu et al., 2002). Since
EGR-1 inhibits NFxB function (Chapman and Perkins,
2000), its low expression may contribute to the increased
NF«B activity in these cells (Gu et al., 2002). IRF-1
induces EGF-R mRNA (Rubinstein ez al., 1998), and
IRF-1 levels are lower in MCF7/LCC9 cells (Gu et al.,
2002). IRF-1 is induced by TNFo/TNF-R1 (Mori et al.,
1999), both of which are also concurrently down-
regulated in MCF7/ LCC9 cells, perhaps explaining
their lower IRF-1 levels. IRF-1 can act as a tumor
suppressor and signal to apoptosis through both p53-
dependent and -independent pathways (Taniguchi,
1997). These observations may reflect IRF-1’s ability
to affect caspase activity, since caspase activation and
induction of apoptosis are implicated in affecting
antiestrogen responsiveness (Mandlekar et al,
2000a, b). Overexpression of caspase-1, which regulates
apoptosis in normal mammary epithelial cells
(Boudreau et al., 1995), is known to be lethal in MCF-
7 cells (Keane et al., 1996). In these models, signaling
through caspase-3 is unlikely because the gene is
truncated in MCF-7 cells (Friedrich et al., 2001);
signaling through caspase-7 may dominate.

Interferons (IFNs) and TNF act synergistically to
induce gene expression, an effect that appears driven by
protein—protein interactions between IRF-1 and NFxB
(Drew et al., 1995; Neish e al., 1995). IRF-1 can induce
degradation of IxBa in some cells (Kirchoff e? al., 1999).
IRF-1:NF«xB heterodimers affect expression of the
ATF-2/jun (Escalante et al., 1998), RANTES (Lee
et al., 2000), VCAM-1 (Neish et al, 1995), IL-6
(Sanceau et al., 1995), and MHC class 1 genes (Drew
et al., 1995). Altered AP-1 expression (includes jun) is
implicated in the TAM-stimulated antiestrogen resis-
tance phenotype (Schiff et al., 2000), RANTES expres-
sion correlates with a poor prognosis (Luboshits ef al.,
1999), VCAM-1 is involved in angiogenesis and
metastasis in breast tumors (Byrne et al., 2000), and
autocrine production of IL-6 is associated with drug
resistance in breast cancer cells (Conze et al., 2001).

Unlike IRF-1, NPM expression is increased in
MCF7/LCC9 cells compared with MCF7/LCC1 cells.
NPM can function as an oncogene, its overexpression
fully transforming NIH 3T3 cells in an assay for
oncogenic potential (Kondo er al., 1997). Levels of
autoantibodies to NPM increase in patients 6 months
prior to recurrence. Consistent with an antiestrogenic
regulation of NPM, the levels of NPM autoantibodies
are lower in breast cancer patients who received TAM
(Brankin et al., 1998). Concurrent upregulation of NPM
and downregulation of IRF-1 suggest a novel signaling
pathway in antiestrogen resistance. Both are estrogen-
regulated genes in MCF-7 cells, IRF-1 expression being
suppressed and that of NPM being induced (Skaar et al.,
1998, 2000). Through its direct binding to IRF-1, NPM
inhibits the transcription regulatory activities of IRF-1
(Kondo et al., 1997). Overexpression of NPM may
eliminate the remaining IRF-1 activity, blocking its
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ability to initiate an apoptotic caspase cascade, and/or
induce p21%<®! (Coccia et al., 2000) and cooperate
with p53 in signaling to growth arrest and apoptosis
(Tanaka et al., 1994a, 1996).

XBP-1 acts through its ability to regulate genes
containing CRE in their promoters (Clauss et al.,
1996). A cAMP-dependent pathway that inhibits IRF-
1 transactivation has been described (Delgado et al.,
1999); XBP-1 activation of this pathway could suppress
further the already low IRF-1 activity in some
antiestrogen-resistant cells.

N-ras-induced signaling may also be important and
implies an upregulation of ras-induced signaling in
resistant cells. Such increased signaling may partly
abrogate the need for growth factor-induced signaling
through autocrine, paracrine, or intracrine stimulation
(Clarke et al., 2001b) because increased ras activation
is downstream of several growth factor receptors
implicated in breast cancer (Santen er al, 2002).
For example, cells may be capable of surviving when
EGFR levels are reduced (Table 5) because loss of
EGFR signaling is compensated by a downstream
upregulation of ras-mediated signaling. Low IRF-1
expression may also contribute to the effects of ras
signaling because IRF-1 induces lysyl oxidase (Sers et al.,
2002), which is implicated in reversing ras-induced
malignant transformation (Contente et al., 1999; Noza-
wa et al., 1999).

Some of the genes we found have been implicated in
antiestrogen resistance in other studies, most notable
being EGF-R (Nicholson et al., 2001) and its family
member c-erbB2 (Kurokawa et al., 2000; Welch and
Clarke, 2002; Konecny et al., 2003). AKT (Perez-
Tenorio and Stal, 2002), c-myc (Carroll et al., 2002),
cyclin D1 (Varma and Conrad, 2002), p53, p2]vridr!
(Fattman et al., 1998), and AP-1 (Schiff ef al., 2000) may
also contribute to antiestrogen responsiveness. We have
incorporated some of this knowledge into the network
in Figure 3, particularly where these genes may interact
with those identified in our models. Several genes are
thought to be downstream of signaling from growth
factor receptors implicated in either phosphorylating/
activating ER and/or inducing mitogenesis and affecting
antiestrogen responsiveness (Chan et al., 2001; Varma
and Conrad, 2002). For example, the type I insulin-like
growth factor receptor and c-erbB2 can activate AKT,
which is often upstream of NFxB (Martin et al., 2000).
Several growth factors activate MAPK signaling to
mitogenesis and signal through activation of ER. For
simplicity, we have not shown all of these possible
interactions in Figure 3.

Functional studies

We acknowledge that the gene network component in
Figure 3 is somewhat speculative. Furthermore, it is
unlikely to be regulated in the same way in TAM-
stimulated models that perceive TAM as an estrogen.
For example, in TAM-stimulated models, key network
components could be perturbed in the same manner as
expected with estradiol treatment.




One approach to assessing the likely validity of
selected genes in our network component is to explore
their functional activities and abilities to affect anti-
estrogen responsiveness in experimental models. We
have begun several studies to further assess the likely
functional relevance of our observations and support
the gene network component in Figure 3. Transcrip-
tional activation of XBP-1 and NFxB was studied using
established promoter-reporter assays (CRE promoter—
reporter assay for XBP-1). As predicted in the tran-
scriptome analyses, increased basal transcription of both
promoters was observed. Further studies showed that
the ability of ICI 182,780 to inhibit NFxB activation is
lost in the resistant cells. Preliminary data from our
laboratory imply that the ability of antiestrogens to
induce IRF-1 is also lost in resistant cells (Bouker et al.,
2002). Consistent with our earlier hypotheses (Clarke
and Lippman, 1992), these data show significant
changes in the endocrine regulation of some ER-
regulated genes. We found no evidence for endocrine
regulation of CRE activation in either responsive or
resistant cells. However, resistant cells exhibit a sig-
nificant fourfold increase in CRE activation, reflecting
the fourfold increase in its expression predicted from the
SAGE study. These observations suggest at least some
general resistance mechanisms: an overexpression and
loss of endocrine regulation of some genes that are ER-
regulated in responsive cells, a downregulation and loss
of endocrine regulation of some genes that are ER-
regulated in responsive cells, and an upregulation of
some endocrine unresponsive genes.

To study functional relevance further, the sensitivity
of our variants to inhibition of NFxB activation by
parthenolide was explored. Parthenolide, which is
currently in early clinica! trials, binds NFxB in a highly
stereospecific manner (Garcia-Pineres et al., 2001) and
inhibits the IxB kinase repressor of NFxB (Hehner ef al.,
1999; Patel et al., 2000). We would expect that, if NFxB
is providing a survival function, MCF7/LCC9 cells
might be more dependent upon this activity. Indeed,
MCF7/LCC9 cells are significantly more sensitive to
growth inhibition by parthenolide than their MCF7/
LCC1 parental cells (Gu et al., 2002). Thus, some cells
may survive antiestrogen exposure by upregulating
estrogen-regulated survival factor(s) concurrent with
the loss of their ER-mediated regulation. While we first
need to confirm and extend these observations, parthe-
nolide may prove useful in combination with Faslodex
or other antiestrogens to either increase responsiveness
and/or delay the appearance of resistant disease.
Functional studies into the activities of the other genes
in this network and investigations into their power to
better predict antiestrogen responsiveness in patients are
in progress.

Conclusions and future prospects

Acquired antiestrogen resistance likely comprises both
true antiestrogen unresponsiveness (the major pheno-
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type) and antiestrogen-stimulated growth (probably a
minor phenotype). Several resistance mechanisms exist
and, with the exception of loss of ER expression, these
mechanisms may not be driven by a single gene or single
signaling pathway. Consequently, we continue to devel-
op the concept that an integrated gene network exists
that allows cells a significant degree of plasticity in how
they signal through this network (Clarke and Briinner,
1995, 1996; Clarke et al., 2001¢). More recently, we have
begun to identify candidate genes in one component of
this network and to explore their likely functional
relevance in experimental models and ability to predict
patient outcome. As we and others explore the
transcriptomes and proteomes of experimental models
and patient samples, additional components of this
network may become apparent. Ultimately, under-
standing how breast cancer cells coordinate a response
to antiestrogens, and overcome the growth inhibitory
nature of the resulting signaling, may lead to better
treatments and more powerful predictors of clinical
response.

Some dietary components can modify the ability of
TAM to inhibit the growth of ER 4+ and perhaps also
ER— breast cancer cells. These dietary components
might be those that alone are believed to affect
recurrence of breast cancer. However, when consumed
in combination with TAM, various dietary components
could either potentiate or inhibit TAM’s actions.
Examples of unexpected findings are the studies of Ju
et al. (2002) and Depypere et al. (2000), who showed
that genistein or tangeretin prevents TAM from
inhibiting growth of malignant breast cells. Currently,
only a few published studies have examined the impact
of nutrition on TAM’s therapeutic effects, and it is likely
that other dietary factors can modify TAM’s ability to
inhibit breast cancer growth.

The clinical use of antiestrogens, and TAM in
particular, may change in the future. Data from some
recent studies suggest that the current generation of
aromatase inhibitors may be more effective than
antiestrogens as first-line endocrine treatment for
ER + metastatic breast cancer and as adjuvant therapy
for ER+ breast primaries (Buzdar and Howell, 2001;
Ellis et al., 2001). Nonetheless, the American Society of
Clinical Oncology’s Technology Assessment Working
Group continues to recommend 5 years of adjuvant
TAM as the standard therapy for women with ER +
breast cancer (Winer er al., 2002). In terms of
chemoprevention, the recommendations include the
use of TAM vs participation in a clinical trial that
involves the administration of raloxifene, any aromatase
inhibitor, or any retinoid only within the context of
chemoprevention (Chlebowski et al., 2002).
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Introduction

Identification of molecular markers that could
serve as accurate predictors of response to specific
cytotoxic chemotherapies would be useful in tar-
geting such therapies at individual patients. One
potential molecular marker is erbB2, a transmem-
brane receptor tyrosine kinase and member of the
EGFR superfamily, which has been implicated in
the generation and/or progression of a number of
different carcinomas, notably tumours of the
breast.1-4 Increased expression of erbB2 is fre-
quently associated with more aggressive cancers
and has been implicated in conferring resistance
to some drugs.

Consequently, several erbB2-specific therapeutic
agents have been developed to target tumours that
specifically overexpress this protein. Herceptin™
(trastuzumab), an anti-etbB2 monoclonal anti-
body and the first erbB2 approach to be approved
for use, has shown activity in some breast cancers
and may improve response to specific cytotoxic
drugs.56 The activity of Herceptin™ has thus

This review will summarise the current data regarding the role of erbB2 as a
molecular marker for therapeutic intervention and drug resistance.

far been attributed to blocking the mitogenic
growth signalling driven by ertbB2 and/or eliciting
an antitumour immune response.’

The mechanisms by which etbB2 promote drug
resistance have not been established. Nor has the
validity of using erbB2 expression to predict
potential drug resistance been proven.

This review summarises and discusses the role of
erbB2 as a molecular marker for therapeutic inter-
vention and drug resistance in cancer.

Background

Increased expression of erbB2 has been observed
in many solid tumours (table 1), including
breast,89 prostate, 1011 ovarian,i2 colorectal 1314
endometrial,!> and non-small-cell lung can-
cers.16-18 In most cases, increased expression of
erbB2 is associated with poor prognosis and is
correlated with decreased relapse-free and overall
survival.10.1519.20 An exception may be colorectal
tumours, which do not consistently demonstrate
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a clear relationship between erbB2 expression and
prognosis. 21,22

Despite the frequent association of erbB2 expres-
sion with more aggressive tumours, the precise
mechanisms involving tumour progression are
not clearly defined. However, several possibilities
have been proposed that may either work in con-
cert or function independently in a tissue-specific
manner. For example, erbB2 up-regulation can
enhance the activation of Akt, a serine-threonine
kinase involved in antiapoptotic signalling.23 In
breast tumour biopsies, increased erbB2 expres-
sion correlates with enhanced Akt-mediated acti-
vation of NF-kB, a transcription factor known to
increase the production of cell survival proteins.24-26
erbB2 levels have also been correlated with both
enhanced Akt expression and Akt-mediated resist-
ance to apoptosis induced by either UV irradiation
or hypoxia in breast cancer cells.24 Similar find-
ings have also been demonstrated in prostate,2?
ovarian?® and non-small-cell lung cancer cell
lines.2?

erbB2 and drug resistance

Several signalling pathways affecting apoptosis
may be influenced by erbB2 activity. For example,
elevated erbB2 expression correlates with greater
resistance to tumour necrosis factor (INF)-o-
induced apoptosis in several in wvitro models,
including breast and ovarian cancer cells24
NIH 3T3 cells3¢ and cervical carcinoma cells.3!

erbB2-mediated resistance appears to be depen-
dent upon Akt activation.?8 Conversely, inhibition
of erbB2 signalling enhances TNF-o-mediated
apoptosis in breast, ovarian28 and lung cancer
cells.32

Other molecular mechanisms that may con-
tribute to etbB2-mediated drug resistance include
disruption of cell cycle checkpoint proteins,
increased signalling through growth-promoting
pathways, and modulation of oestrogen receptor
(ER) function. The likely role(s) of these effects in
drug resistance are described below, beginning
with the possible effects of erbB2 expression on
response to anti-oestrogens.

Although erbB2 expression has been widely
implicated in affecting response to various anti-
neoplastic drugs, the typical association of erbB2
overexpression with poor clinical outcome com-
plicates the assessment of its role in drug resist-
ance in some studies. Tumours with a poor
prognosis may have a poor cinical outcome irre-
spective of treatment, reflecting their biological
progression rather than any specific drug resist-
ance. When examined in breast cancer models,
such as normal mammary epithelial cells or

ERBB2 EXPRESSION AND DRUG RESISTANCE IN CANCER

human breast cancer cell lines coaxed to overex-
press erbB2 by transfection,33 ertbB2 overexpres-
sion does not confer drug resistance. However,
co-expression of erbB2 with other EGFR family
members can produce resistance to several
chemotherapeutic agents commonly used to treat
breast cancer.34 These observations suggest that
cellular context (the pattern of other genes/pro-
teins expressed within a cell35) can significantly
affect erbB2 signalling and drug responsiveness.

erbB2-mediated resistance to tamoxifen

Resistance to the triphenylethylene anti-oestrogen
tamoxifen has been correlated with ertbB2 expres-
sion in several in vitro studies,36-32 but the mecha-
nisms are unclear.35 Protein-protein interactions
between erbB2 and ER have been described in cell
membranes and may protect breast cancer cells
from tamoxifen-induced apoptosis by preventing
tamorxifen-ER interactions.36 Overexpression of
erbB2 in MCF-7 breast cancer cells prevents
tamoxifen-induced apoptosis, apparently by up-
regulating the antiapoptotic bcl-2 and bcl-xL pro-
teins.37 etbB2 signalling via MAP kinase activation
has also been proposed as a mechanism for
tamoxifen resistance in breast cancer cells.38

The ability of erbB2 to induce Akt-mediated
NF-xB signalling to promote cell survival impli-
cates this pathway as another mechanism for anti-
oestrogen resistance. Recently, indirect evidence
in support of this hypothesis was obtained using
gene-expression microarray analysis of anti-
oestrogen resistant cells, and increased NF-xB
expression in cells surviving treatment with the
anti-oestrogen  Faslodex™ (fulvestrant) was
reported.40 Furthermore, anti-oestrogen-resistant
cells have up-regulated NF-xB transcriptional acti-
vation, marked by a lack of anti-oestrogen regula-
tion of this activation, and are more sensitive to
inhibition of NF-kB activity by the small-mole-
cule inhibitor parthenolide.4® Since NF-xB is
downstream of both erbB2 and Akt, some
tumours may become resistant without increased
activity of either upstream component (fig. 1).
Thus, cellular context may be a key determinant
in how erbB2 signals in anti-oestrogen-resistant
breast cancers. It remains to be seen whether
including measurements of erbB2, Akt and NF-xB
will improve the ability to predict anti-oestrogen
responsiveness in breast cancer.

Several clinical studies have also shown that
tumours overexpressing erbB2 exhibit a decreased
response to tamoxifen when compared to tumours
without erbB2 overexpression.#1-43 However, some
studies are difficult to interpret because erbB2
overexpression is often associated with ER nega-
tivity and ER-negative tumours rarely respond to
anti-oestrogens.3s
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The combination of tamoxifen and Herceptin™ is
more effective in treating erbB2-positive tumours
than either agent alone.4 While this is pharmaco-
logical antagonism,45 blocking erbB2 activity dur-
ing the administration of tamoxifen could still
provide clinical benefit.

erbB2 and resistance to taxoids

Data from several in vitro studies indicate that
erbB2 may contribute to paclitaxel resistance in
breast and head and neck cancer cells.46-48 The
opposite effect was reported in one study in ovar-
ian cancer cells, where increased erbB2 expression
correlated with increased sensitivity to pacli-
taxel.4 Whether this latter result truly reflects a
different relationship between erbB2 expression
and paclitaxel resistance in ovarian tumours, in
comparison to other solid tumours, requires fur-
ther study.

Two mechanisms of paclitaxel resistance have
been attributed to erbB2 signalling, other than
simply blocking direct signalling to apoptosis.
First, erbB2 disrupts paclitaxel-induced cell cycle
arrest at the G2/M checkpoint, an effect that nor-
mally leads to apoptosis through the involvement
of the serine-threonine kinase p34¢d;50 erbB2
signalling has been associated with increased

Figure 1. erbB2 signalling pathways and their implication in conferring resistance to antineoplastic drugs.

expression of p21¢p!, which inhibits the function
of p34«d2 and allows cells to bypass the G2/M
checkpoint and avoid paclitaxel-induced apopto-
sis.51.52 Second, paclitaxel disrupts the cell cycle by
interfering with the microtubule functions associ-
ated with mitosis. NIH-3T3 cells genetically engi-
neered to overexpress erbB2 show alterations in
B-tubulin isotype expression patterns associated
with paclitaxel resistance.53

Currently, combinations of taxoids with anti-
erbB2 therapeutics are being tested in the clinical
setting. Data available from phase II trials in
breast cancer patients, in whom the use of
Herceptin™ is appropriate, indicate that a combi-
nation of Herceptin™ with either paclitaxel or
docetaxel is both effective and tolerable.54-56

While these early studies suggest that combina-
tions of Herceptin™ and taxoids are potentially
more effective than other drug combinations, fur-
ther study is needed before firm conclusions can
be drawn.54.57.58

Anthracycline responsiveness and
erbB2 expression

Like the taxoids, the anthracylines, particularly
Adriamycin™ (doxorubicin), are among the most




effective single agents for breast cancer and are
commonly used in combination first-line therapy.
In contrast to the taxoids, high levels of erbB2
expression in breast tumours generally correlate
with increased response to anthracycline-based
regimens,5?-62 although exceptions have been
noted.63.64

Anthracylines inhibit topoisomerase II activity,
and the erbB2 and topoisomerase Iloe genes,
which are located near each other on chromo-
some 17, are often co-expressed. A functional
interaction between erbB2 and topoisomerase ITo.
has been reported, where erbB2 increases topoi-
somerase Il activity.53 Thus, some tumours that
overexpress erbB2, independent of gene amplifi-
cation, may also express sufficient levels of topoi-
somerase II to exhibit increased sensitivity to
anthracyclines. Some investigators have suggested
that overexpression of erbB2 might serve as a
biomarker for predicting anthracycline respon-
siveness in patients, but this requires further
study.s5

erbB2 and EGFR

The erbB2 signalling network is an attractive
molecular target in breast cancer, especially in ER-
negative disease. Although inhibition of erbB2
results in tumour regression in a cohort of patients
with metastatic disease, it is less clear whether tar-
geting other receptors in this signalling network
would be of therapeutic benefit.

Aberrant EGFR and erbB2 signalling has been
causally associated with enhanced breast cancer
cell proliferation and shorter survival in patients
with mammary carcinomas.86667 Also, studies
with breast cancer cell lines and human tumours
have demonstrated constitutive phosphorylation
of erbB2.6869 The reasons for this constitutive
activation are not clear but one possibility
includes co-expression of ligand-activated EGFR
resulting in transactivation of the erbB2 tyrosine
kinase. Indeed, in cells that co-express erbB2,
ligand-activated EGFR preferentially recruits
erbB2 into a heterodimeric complex that exhibits
an increased rate of recycling stability, and sig-
nalling potency compared to EGFR homo-
dimers.?071

The recemt work by Shou et al. highlights the
important interaction between EGFR and erbB2.72
The authors examined the cross-talk between the
ER and the EGFR/erbB2-receptor family by exam-
ining the ER-positive (MCF-7) and tamoxifen-
resistant erbB2-overexpressing (HER2-18) breast
cancer cell lines. In both cell lines, ZD1839
(‘Iressa’) inhibited ER, EGFR and erbB2 phos-
phorylation induced by epidermal growth factor
and heregulin, but not that by oestrogen.

ERBB2 EXPRESSION AND DRUG RESISTANCE IN CANCER

Interestingly, in the tamoxifen-resistant HER2-18
cells, ZD1839 completely inhibited both oestro-
gen- and tamoxifen-induced phosphorylation and
activation of erbB2.

Following on from this observation, long-term
studies to investigate whether ZD1839 treatment
can delay or prevent development of resistance to
various endocrine therapies are in progress.

Another intriguing finding from studying breast
cancer cells is that high expression levels of
erbB2, even in the presence of a low number of
EGFR, are exquisitely sensitive to ZD1839. Using
a panel of breast cancer cell lines representative of
the entire spectrum of EGFR and erbB2 alter-
ations found in breast cancer patients, Campiglio
et al.73 showed that growth inhibition of these
cell lines demonstrates that sensitivity to ZD1839
did not depend on the level of EGFR expression.

If receptor cooperativity is in fact operational in
breast cancers, interruption of EGFR function
with EGFR-specific tyrosine kinase inhibitors,
such as ZD1839 may disrupt EGFR-erbB2 cross-
talk and result in erbB2 inactivation as well. This
inactivation of erbB2 through the inhibition of
EGFR may also increase the antitumour effect of
Herceptin™.

Summary

The association between erbB2 expression and sen-
sitivity of the tumour/cancer cells to chemotherapy
has been widely studied, particularly in breast can-
cer. Currently, data suggest that high levels of
erbB2 confer some degree of resistance to taxoids
but may sensitise cells to anthracyclines. Adjuvant
chemotherapy regimens using other cytotoxic drugs
(e.g. methotrexate, 5-fluorouracil, cisplatin) have
also demonstrated reduced efficacy in high erbB2
expressing tumours in comparison to those with low
erbB2 expression.?#-77 However, others have found
no link between erbB2 expression and response to
adjuvant chemotherapy in some breast tumours.78-8!
More recently, investigators have begun to study
combinations of Herceptin™ with other chemo-
therapeutic agents, such as gemcitabine in breast
cancers?® and estramustine in prostate cancer.8?
Several such combinations show promise and may
become more widely accepted in the near future.

The association between erbB2 expression and poor
prognosis is well established, making erbB2 a use-
ful prognostic marker in some cancers. Evidence
clearly suggests that overexpression of erbB2 may
also be a useful predictor of responsiveness to spe-
cific drugs in some tumours. However, the complex-
ity of cell signalling and the importance of cellular
context may dictate thatsolely measuring erbB2
expression may not be sufficiently discriminative, It

701839 completely
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may be necessary to identify a series of additional
genes which, when information on their expression
patterns are combined, will produce a sufficiently
powerful predictor of drug-specific responsiveness.

The mechanisms by which erbB2 expression affects
drug responsiveness may be more complex than cur-
rently appreciated and may require a better under-
standing of cellular context and the factors that
affect erbB2 signalling to proliferation/ cell sur-
vival. However, gene-expression microarray and
proteomic technologies have the power to better
define cellular context and identify genes/ proteins
that can modify erbB2 signalling. Some of these
genes may even provide new targets for drug devel-
opment. Since erbB2 sensitises cells to some drugs
while conferring resistance to others, measuring
erbB2 expression and those genes that affect its
downstream signalling could enable the targeting of
specific therapies to individual tumours.
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SUMMARY

We propose a block principal component analysis method for extracting information from a database
with a large number of variables and a relatively small number of subjects, such as a microarray gene
expression database. This new procedure has the advantage of computational simplicity, and theory and
numerical results demonstrate it to be as efficient as the ordinary principal component analysis when
used for dimension reduction, variable selection and data visualization and classification. The method is
illustrated with the well-known National Cancer Institute database of 60 human cancer cell lines data
(NCI60) of gene microarray expressions, in the context of classification of cancer cell lines. Copyright
© 2002 John Wiley & Sons, Ltd.

KEY WORDS: principal componént analysis; grouping of variables; similarity; gene expression;
microarray data analysis

1. INTRODUCTION

Principal component analysis is one of the most common techniques of exploratory mul-
tivariate data analysis. It is a method of transforming a set of p correlated variables x =
(x1,%2,...,%,) to a set of p uncorrelated variables y=(y1,,...,¥,) that are linear func-
tions of the x’s, referred to as p principal components of x, such that the variances of the
y’s are in descending order with respect to the variation among the x’s. Usually the first
several components explain most of the variation among the x’s. In addition to many other
applications, principal component analysis has been shown to be a useful tool in reducing
data dimension and extracting information, in seeking important regressors in regression anal-
ysis, and in effectively visualizing and clustering subjects, when measurements on a large
number of variables are collected from each subject. The book by Jolliffe [1] provides excel-
lent reading on this topic, although other textbooks on multivariate data analysis do also (for
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example, references [2] and [3]). Recently, principal component analysis has found application
in the analysis of microarray gene expressions [4], a growing technology in human genome
studies [5, 6].

When dealing with an extremely large number of variables (for example, 500 or more),
deriving principal components can be computationally intensive, since it involves finding the
eigenvectors (and eigenvalues) of a matrix with large dimensions. Moreover, a linear com-
bination of such a large number of variables becomes less meaningful to the investigators
since the high dimensionality makes it hard to extract useful information and to interpret
the combination. In one microarray technology, cDNA clone inserts are printed onto a glass
slide and then hybridized to two differentially fluorescently labelled probes. The final gene
expression profile contains fluorescent intensities and ratio information of many hundreds or
thousands of genes. If one intends to apply principal component analysis directly to extract
gene expression information for these genes from a certain group of subjects, then one has
to deal with a matrix with huge dimensions.

In dealing with such high dimensional data, we propose to perform the principal component
analysis in a ‘stratified’ way. We first group the original variables into several ‘blocks’ of
variables, in the sense that each block contains variables (genes in the microarray experiments)
that are similar; variables from the same block are more correlated than variables from different
blocks. We then perform principal component analysis within each block and obtain a small
number of variance-dominating principal components. Combining these principal components
obtained from each block forms a new database from which we can then extract information
by performing a new principal component analysis. We term this procedure as ‘block principal
component analysis’. Dominating principal components obtained from the final stage can then
be used in various data exploratory analyses such as clustering and visualization.

The proposed ‘block principal component analysis’ method also enables us to reduce the
number of variables effectively. Within each block, when principal component analysis is
conducted and dominating linear combinations of variables are examined, only those variables
that have relatively large coefficients are retained. We will examine this variable selection
procedure in detail using the gene microarray example.

After a brief review of the mathematical derivation of principal components and their
applications in Section 2, we introduce in Section 3 the method of ‘block principal component
analysis’. In Section 4, we investigate the efficiency of block principal components in the
reduction of data dimension with respect to the amount of variance explained. It is shown that
the proposed procedure can be as efficient as the ordinary principal component analysis. We
then discuss the selection of informative variables using block principal component analysis.
In Section 5 we apply the method to the problem of classification of microarray data from
the well-known National Cancer Institute database of 60 human cancer cell lines (NCI60),
each of which has gene microarray expression of more than 1000 genes [7]. Some discussion
is given in Section 6.

2. PRINCIPAL COMPONENTS
We start with a brief mathematical derivation of principal components. More details can be
found in references [1] or [2] and [3]. Throughout, vectors are viewed as column vectors, and

A’ is the transpose of a matrix A.

Copyright © 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:3465-3474
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Consider a p-variate random vector X with mean vector y and positive definite covariance
matrix . Let A >4, > --4,(>0) be the eigenvalues of X and let W=(wy,...,w,) be a pxp
orthogonal matrix such that

W/EW = A =diag(Ly, ..., 4,) (1)

so that w; is an eigenvector of X corresponding to the eigenvalue A, Now put U=W'X=
(Ui,...,U,); then cov(U)=A, so that Ui,...,U, are all uncorrelated, and var(U;)=4;,
i=1,..., p. The linear components Uj,..., U, are called principal components of X. The first
principal component is U; =w;X and its variance is 4;; the second principal component is
U, =w;X with variance 1,; and so on. These p principal components have the following key
property. The first principal component U is the normalized (unit length) linear combination
of the components of X with the largest variance, and its maximum variance is A;; then out
of all normalized linear combinations of the components of X which are uncorrelated with U,
the second principal component U, has maximum variance 4. In general, the kth principal
component U, has maximum variance 1;, among all normalized linear combinations of the
components of X which are uncorrelated with U,,...,Us_1.

Very often these principal components are referred to as population principal components.
In practice X is not known and has to be estimated from the sample, yielding the sample
principal components. We do not distinguish these two definitions here.

Once the p principal components are derived, then we can conduct various statistical anal-
yses using only the first g(< p) principal components which account for most of the variance
of X. For example, we can plot the first two (three) principal components in a two- (three-)
dimensional space to seek interesting patterns among the data, or perform clustering analysis
on subjects in order to search for clusters among the data. We can also use these leading
principal components as regressors in a regression analysis to find prognostic factors for clin-
ical outcomes (for example, drug response or resistance). See reference {1] for various other
applications of principal component analysis.

Derivation of principal components involves computation of eigenvalues and eigenvectors
of the px p matrix X (or its sample estimate). When p is very large, the computation will
become extremely extensive. Moreover, it is always the interest of the investigators to examine
the first several leading principal components in order to find useful information. With a linear
combination of a large number of variables, this becomes extremely difficult and results are
hard to interpret. To deal with these problems, we develop the ‘block principal component
analysis’ method to be discussed in the following sections.

3. BLOCK PRINCIPAL COMPONENT ANALYSIS

Ordinary principal component analysis needs to find an orthogonal matrix W such that W/YXW
is diagonal. In a very extreme case when all of the components of X are independent, the p
principal components are the p components of X, and W is merely some permutation of the
identity matrix, rearranging the components of X according to their variances. If the random
vector X can be partitioned into & uncorrelated random subvectors, so that X has diagonal
blocks, then performing principal component analysis with X is equivalent to performing prin-
cipal component analysis with each subvector and then combining all the principal components

Copyright © 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:3465-3474
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from all subvectors. This simple fact leads to the consideration of ‘block principal component
analysis’ even when X does not have uncorrelated partitions. _

Let X be partitioned as X=(X},...,X}) with X; being p;-dimensional, where p; +---+
pr=p, and X be partitioned accordingly as

P TID NPIIE 3
B=l L @
T Lpp - - - B
Let Wi=(W,...,Wp,), i=1,...,k, be an p;xp; orthogonal matrix such that
W/Z;W, = A; =diag(Ai, ..., Ap,), Au=---=2p, (3)

so that w;, j=1,..., p;, is an eigenvector of X; corresponding to the eigenvalue Aj. Put
U;=W/X;=(Ua,...,Up), then the p; components U;, j=1,..., p;, of U; define the p;
principal components, referred to as ‘block’ principal components, with respect to the random
vector X;, the ith block of variables of X.

Now define
Q =diag(W;,..., W) 4)
also an orthogonal matrix, and ‘
Y=QX=(U,...,Uy) (5)
a random vector combining all ‘block’ principal components, then
A WELW, - - - WEGW,
cov(Y)=Q=QZQ= : : - : (6)
WEZaW, WEIpW, - . - Ay

Note that £ and X have the same eigenvalues, and in particular, tr(Q) = tr(X), where tr stands
for the trace (sum of all diagonal elements) of a matrix. Hence X and Y have equal total
variance. Let W be defined as in (1), and

R=Q'W )
then R is also an orthogonal matrix and
R’ cov(Y )R =W'EW =diag(4y,...,4,) ®)

that is, the p principal components of Y are identical to those of X.

Hence, we can obtain the principal components of a random vector X by two steps. In
the first step, we group the variables in X into several blocks, and then derive principal
components for each block of variables. In the second step, we define a new random vector
Y by combining all the ‘block’ principal components and then obtain the principal components
of Y, which are identical to the principal components of X.

Copyright © 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:3465-3474
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The geometrical interpretation of block principal component analysis is quite clear. The
p-dimensional random vector X represents the p axes in a p-dimensional space. The p
principal components rotate the X-space to one whose axes are defined by the p principal

- components. In order to rotate the original space to its desired direction, we can first group

the axis and rotate the axis within each group and then do an overall rotation to achieve the
desired direction.

From the mathematical derivation above, we notice that this procedure always yields the
principal components of X, regardless of how the blocks are defined. The choice of blocks,
however, does have effects on several aspects. First, if the X can be divided into uncorrelated
blocks, then the components in Y are the principal components of X, and there is no need
to orthogonalize Y. Second, even when X cannot be partitioned into uncorrelated blocks, if
the off-diagonal terms W/Z;W, are relatively small, as measured, say, by a matrix norm (for
example, squared sum of squares of all elements), then without losing much information,
we can still use the components of Y as approximation to the principal components of X.
Third, when reduction in dimension and in the number of variables is conducted within each
block, which will be discussed in the next section, we would expect that variables within each
block are much more correlated than variables from two different blocks, so that selection
of dimensions and of variables from one block will not be much affected by selection of
variables from another block. For these reasons, we recommend grouping the variables into
blocks according to their correlation. This can be achieved by clustering the variables using
a proper function of Pearson’s correlation coefficient as the measure of similarity between
variables; one such measure is given in Section 5 of the paper.

4. DIMENSION REDUCTION AND VARIABLE SELECTION
4.1. Dimension reduction

A major application of principal component analysis is to reduce data dimension so that
the data structures can be explored or even visualized in a low-dimensional space. When
data dimension is extremely high, block principal component analysis allows us to reduce
data dimension more effectively without losing much information. We propose the following
procedure to achieve low dimension. Suppose & blocks, X;, with dimension p; and covariance
matrix Xy, i=1,...,k, of the original variables X, are determined according to the correlation
between variables. For each block X; we derive the p; principal components, and retain
only the first g; (< p;) principal components, say, Uy, j=1,...,4;, so that the total variance
explained by these g; principal components is =; tr(X;), where 0 <m; <1. Now define

Y~=((jll’~--’Ulq1a"'3Ukl’”-squk), (9)

a variable combining all principal components selected from each block. We then obtain the
principal components of Y, and choose the first f principal components, say Zi,...,Zs, which
explain a high percentage of 1007 per cent (for example, =95 per cent) of the total variance
of Y. Data visualization and classification with the original variable X is then conducted based
on these f principal components.

These block principal components preserve many optimal properties of the ordinary prin-
cipal components: (i) Zi,...,Z; are uncorrelated; and (ii) var(Z;)>--->var(Z;). However,
these variances are no longer the eigenvalues of X, the covariance matrix of the original

Copyright © 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:3465-3474
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variables X. Instead, they are the eigenvalues of the covariance matrix of Y; (iii) the total
variance of Z;,...,Z; is

Ftrcov(Y)] =7 Zk: [i var(Uij)l =7 Xk: 7 tr(X;)
i=1 | j=1 i=

which accounts for 1007 per cent of the total variance of X, where

CAYE mu(Ey) A mitn(Es)
- @) Tk, ()

4

We hence have
n>7 min{m} (10)

When using principal components to explore (for example, cluster, visualize) the data, we
expect that the leading components explain most of the variance so that they will reveal the
true nature of the data structure; (10) asserts that block principal components Z,,...,Z; will
retain most of the variance if, within each block and for the final principal component analysis,
the selected principal components explain most of the variance. For example, if 7;>95 per
cent, i=1,...,k and #>95 per cent, then ©>90 per cent.

4.2. Variable selection

When the number p of variables is very large, many variables can be highly correlated with
each other and some may become redundant when the rest are being used to explore date
structure. For example, in a gene microarray experiment where gene expression of a large
number of genes is obtained for a number of tissues, tissue classification based on all genes
may be quite similar to that based on a small group of genes. If this is the case, then
with respect to tissue classification, only these genes are informative and the rest become
redundant, assuming that using all the genes indeed captures the real structure of the data. It
is therefore important to select variables that contain almost all information, with respect to
certain statistical properties, that all variables would contain.

Block principal component analysis can be used to select these variables. We propose the
following two steps:

Step 1. Divide the original variable X into k£ blocks, X;, i=1,...,k, according to correlation
between variables.

Step 2. For each block X;, conduct principal component analysis and select the first g; leading
principal components such that the total variance of X; is explained by a satisfactory
amount, say, at least 95 per cent. Examine the coefficients (or loadings in many
principal component analysis literatures) of the variables in X; in these g; leading
components and retain only those variables with large coefficients. Combine all the
variables selected from each block and then use only these variables for further
analysis.

A third step may also be useful if the number of variables selected is still too large:
Step 3. Conduct principal component analysis again, but based only on the variables selected
in step 2. Select the first several leading principal components to explain most of the

Copyright © 2002 John Wiley & Sons, Ltd. . Statist. Med. 2002; 21:3465-3474
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variance. Then examine the variables again and retain those with large coefficients in
these leading combinations.

~ There is no universal criterion for how many and which variables should be selected from
the leading principal components. Jolliffe [1] recommended choosing a variable from each
leading principal component with the largest absolute coefficient, if the variable has not been
selected from previous leading components. In practice some modifications of Jolliffe’s proce-
dure may also be effective. For example, one can choose several variables from each leading
principal component with the largest absolute coefficients. For more discussion, see refer-
ence [1].

In the next section, we demonstrate the block principal component analysis method us-
ing the well-known NCI60 human cancer cell-line data [7] to select a group of genes to
visualize/cluster the cell lines. The result shows such selection to be quite effective.

5. APPLICATION TO GENE MICROARRAY ANALYSIS: AN EXAMPLE

The NCI60 database contains expression of more than 9000 genes of 60 human cancer cell
lines from nine types of cancer including colorectal, renal, ovarian, breast, prostate, lung and
central nervous system, as well as leukaemia and melanomas. Gene expression levels are
expressed as —log(ratio), where ratio=the red/green fluorescence ratio after computational
balancing of the two channels. Readers are referred to reference [7] for more details. The
data have been made public for analysis on the authors” web site http://discover.nci.nih.gov.
To get familiar with the DNA microarray technology, readers are referred to references [5]
and [6] for more information.

One of the objectives of this study is to explore the relationship between gene profiles
and cancer phenotypes. Scherf et al. [7] used a clustering analysis method to study the
relationship. They provide the clustering tree of the 60 cell lines, based on 1376 genes, and
showed that most of the cell lines cluster together according to their phenotypes (see Figure 2a
of reference [7].) One important question is whether a smaller group of genes can preserve
the same relationship structure.

We use a selection method based on block principal component analysis, as described in
Section 4, to tackle this issue. For simplicity, we study only cell lines from three types
of cancer, colorectal (7 cell lines), leukaemia (6 cell lines) and renal (8 cell lines); each
cell line has microarray expression of the same 1416 genes. The data set of interest, 21
cell lines (being the subjects) and 1416 genes (being the variables), hence form a 21x1416
matrix, representing 21 data points (21 rows of the matrix) in a 1416-dimensional data space.
The complete-linkage clustering tree based on these 1416 genes is shown in Figure 1(a).
The dendrogram is consistent with that in reference [7], and shows clearly that the 21 cell
lines cluster according to their cancer phenotypes. The readers are reminded that phenotype
information is not used in the clustering, but only to validate the clustering results. One
renal cell line marked as ‘RE8’, which is farther from the rest of renal cell lines, has been
recognized to have some special feature (see reference [7] for detail).

We now seek to determine the blocks for the 1416 genes. Figure 2 shows a plot of semi-
partial R? versus the number of clusters using complete-linkage algorithm and dj; = arcos(|p;])
as a measure of dissimilarity between gene i and gene j, where p; is the Pearson correlation

Copyright © 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:3465-3474
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Figure 1. Dendrogram of complete linkage hierarchical clustering of 21 cell lines: (a) tree based on
1416 genes; (b) tree based on 200 genes. CO is colorectal, LE is leukaemia and RE is renal.

coefficient. The semi-partial R? measures the loss of homogeneity when two clusters are
merged. Define SSy as the corrected total sum of squares of all subjects and summed over
all variables. For a certain cluster C, let SS¢ be the corrected total sum of squares of all
subjects in cluster C summed over all variables. Then the semi-partial R? for combining two
clusters C; and C, into one cluster C is (SS¢ — SS¢, — SS¢,)/SSr. A large semi-partial R?
indicates significant decrease in homogeneity. Since subjects within the same cluster should
be similar, two clusters should not be combined as one cluster if the semi-partial R? is large.
In practice we determine the number of clusters by minimizing the semi-partial R?; a plot
of the semi-partial R? versus the number of clusters is extremely helpful. More discussion
and computation of semi-partial R? can be found in reference [8]. Other statistics can also be
used to determine the number of clusters in the data. Milligan and Cooper [9] examined 30
procedures for determining the number of clusters, including several variations based on sum
of squares.

For the cancer cell-line microarray data, the semi-partial R*> becomes nearly flat after 14
clusters. This indicates that the 1416 genes can be approximately divided into 14 clusters;
further dividing the data gains little in reducing heterogeneity. These clusters of genes deter-
mine the blocks within each of which principal component analysis will be conducted. The
number of genes in the blocks ranges from 43 to 158 (Table I). Principal component analysis

Copyright © 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:3465-3474
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Table I. Summary of 14 gene blocks.

Block
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of genes 107 154 88 158 68 152 84 136 44 84 143 82 73 43
Number of PCs 14 13 15 15 14 15 14 15 14 16 16 14 14 11
Per cent variance 95.6 953 952 953 952 96 951 952 96 96 951 96 956 956

is conducted within each block, and the first several leading principal components are then
selected, resulting in a total of 200 principal components. For each block, selected principal
components explain >95 per cent of total variance in that block. For each block, Table I
lists the number of genes, the number of selected principal components and the percentage of
total variance explained by these leading components.

For each block, genes with largest coefficients in the selected leading principal components
are retained, using Jollife’s one variable per leading component method. This yields a total
of 200 genes for further analysis.

The first three leading principal components, computed based on the 1416 genes, explain
only 49 per cent of the total variance. Two- or three-dimensional visualization of the data
based on these principal components can be very misleading. We validate these selected 200
genes by deriving a hierarchical clustering tree for the 21 cell lines based on gene expressions.
The dendrogram is shown in Figure 1(b). It is remarkably similar to the one based on all
1416 genes (Figure 1(a)). Both illustrate that cell lines with the same phenotype are more
similar than those from different phenotypes. This shows that a much smaller number of genes
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can provide the same insight for the data as the whole set of genes, and block principal com-
ponent analysis provides an effective way to achieve this. Note that a hierarchical clustering
dendrogram, obtained based on a set of variables, is essentially the same as the hierarchical
clustering dendrogram obtained based on leading principal components, provided that these
leading components explain most of the variation among the variables. The remarkable re-
semblance between Figure 1(a) and Figure 1(b) further demonstrates the effectiveness of the
block principal component analysis method, as compared to the ordinary principal component
analysis.

6. DISCUSSION

In this paper we show that a much smaller number of genes can provide the same insight
for the cancer phenotypes as the whole set of genes. We demonstrate that block principal
component analysis is an effective way to select these genes. This kind of analysis is ‘unsu-
pervised’, a term popular in neural network/pattern recognition [10]; cancer phenotypes are
used only to validate the algorithm and analysis.

Selection of informative genes in the microarray setting, and other settings as well, is by
no means an easy task, especially when the analysis is unsupervised. Very likely the choices
of genes are not unique; there might exist several groups of genes that provide the same
classification. Biostatisticians should provide every potential group of genes to the medical
investigators and hopefully a meaningful group of genes can be determined by combining the
statistical guidance and biological knowledge. Indeed, some preliminary selection of genes
based on biological knowledge is extremely valuable, even before any statistical analysis is
conducted. It should be noted, however, that genes that are biologically similar/dissimilar may
not be statistically similar (correlated)/dissimilar (uncorrelated).
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